Stefanie Enriquez-Geppert

Learn More
Response inhibition paradigms, as for example stop signal and go/no-go tasks, are often used to study cognitive control processes. Because of the apparent demand to stop a motor reaction, the electrophysiological responses evoked by stop and no-go trials have sometimes likewise been interpreted as indicators of inhibitory processes. Recent research,(More)
Conflict and inhibition are considered to exert strong influences on the neurophysiological N200 and P300 brain responses as evoked in go/nogo and stop-signal tasks. In order to separate their underlying neural and functional mechanisms, the current experiment manipulated both conflict and inhibition. To do so, the go/nogo and stop-signal tasks were merged(More)
The stop-signal task is a prototypical experiment to study cognitive processes that mediate successful performance in a rapidly changing environment. By means of simultaneous recording and combined analysis of electroencephalography and functional magnetic resonance imaging on single trial level, we provide a comprehensive view on brain responses related to(More)
Cortical oscillations demonstrate a relationship with cognition. Moreover, they also exhibit associations with task performance and psychiatric mental disorders. This being the case, the modification of oscillations has become one of the key interests of neuroscientific approaches for cognitive enhancement. For such kind of alterations, neurofeedback (NF)(More)
Cognitive enhancement is a popular topic, attracting attention both from the general public and the scientific research community. Higher cognitive functions are involved in various aspects of everyday life and have been associated with manifest behavioral and psychiatric mental impairments when deteriorated. The improvement of these so-called executive(More)
Current theoretical positions assume that action-related word meanings are established by functional connections between perisylvian language areas and the motor cortex (MC) according to Hebb's associative learning principle. To test this assumption, we probed the functional relevance of the left MC for learning of a novel action word vocabulary by(More)
Humans differ in their ability to learn how to control their own brain activity by neurofeedback. However, neural mechanisms underlying these inter-individual differences, which may determine training success and associated cognitive enhancement, are not well-understood. Here, it is asked whether neurofeedback success of frontal-midline (fm) theta, an(More)
Frontal-midline (fm) theta oscillations as measured via the electroencephalogram (EEG) have been suggested as neural "working language" of executive functioning. Their power has been shown to increase when cognitive processing or task performance is enhanced. Thus, the question arises whether learning to increase fm-theta amplitudes would functionally(More)
The midcingulate cortex (MCC; often somewhat imprecisely referred to as dorsal or cognitive part of the anterior cingulate cortex or dACC) is a core region contributing to cognitive control. Neuroanatomical deviations in the midcingulate region have been observed in a variety of mental disorders. Even in healthy subjects a high degree of morphological(More)
Neurofeedback training procedures designed to alter a person's brain activity have been in use for nearly four decades now and represent one of the earliest applications of brain-computer interfaces (BCI). The majority of studies using neurofeedback technology relies on recordings of the electroencephalogram (EEG) and applies neurofeedback in clinical(More)