Stefanie Donat

Learn More
The function of the Staphylococcus aureus eukaryotic-like serine/threonine protein kinase PknB was investigated by performing transcriptome analysis using DNA microarray technology and biochemical assays. The transcriptional profile revealed a strong regulatory impact of PknB on the expression of genes encoding proteins which are involved in purine and(More)
Current models for global virulence regulation in Staphylococcus aureus are mainly based on studies performed with only a limited number of laboratory strains derived from NCTC8325. In these strains the small regulatory RNA, RNAIII, has a central role in virulence gene regulation. Recently, RNAIII was suggested to control transcription of target genes(More)
In prokaryotes and eukaryotes, phosphotransfer represents a common mechanism to regulate cellular functions. Recent work revealed that modulation of cellular processes by eukaryote-like serine/threonine kinases (STKs) and phosphatases (STPs) are widespread in bacteria. During the last two years, first evidence on the role of Ser/Thr(More)
Effective treatment of infections caused by the bacterium Staphylococcus aureus remains a worldwide challenge, in part due to the constant emergence of new strains that are resistant to antibiotics. The serine/threonine kinase PknB is of particular relevance to the life cycle of S. aureus as it is involved in the regulation of purine biosynthesis,(More)
Non-invasive imaging techniques in microbial disease models have delivered valuable insights in the intimate pathogen-host interplay during infection. Here we describe evaluation and validation of a transgenic bioluminescence reporter strain of the human-pathogenic mold Aspergillus fumigatus, one of the main fungal pathogens affecting immunocompromised(More)
In eukaryotic cell types, virtually all cellular processes are under control of proline-directed kinases and especially MAP kinases. Serine/threonine kinases in general were originally considered as a eukaryote-specific enzyme family. However, recent studies have revealed that orthologues of eukaryotic serine/threonine kinases exist in bacteria. Moreover,(More)
Little is known about intracellular metabolite pools in pathogens such as Staphylococcus aureus. We have studied a particular metabolome by means of the presented LC-MS method. By investigating the central carbon metabolism which includes most of the energy transfer molecules like nucleotides, sugar mono- and biphosphates, and cofactors, a conclusion about(More)
Staphylococcus aureus is a commensal of the human nose and skin. Human skin fatty acids, in particular cis-6-hexadecenoic acid (C-6-H), have high antistaphylococcal activity and can inhibit virulence determinant production. Here, we show that sub-MIC levels of C-6-H result in induction of increased resistance. The mechanism(s) of C-6-H activity was(More)
  • 1