Stefanie Benesch

Learn More
WASP and WAVE family proteins promote actin polymerization by stimulating Arp2/3-complex-dependent filament nucleation. Unlike WAVE proteins, which are known to drive the formation of protrusions such as lamellipodia and membrane ruffles, vertebrate cell functions of WASP or N-WASP are less well established. Recent work demonstrated that clathrin-coated pit(More)
In mammalian cells, actin dynamics is tightly controlled through small GTPases of the Rho family, WASP/Scar proteins and the Arp2/3 complex. We employed Cre/loxP-mediated gene targeting to disrupt the ubiquitously expressed N-WASP in the mouse germline, which led to embryonic lethality. To elucidate the role of N-WASP at the cellular level, we immortalized(More)
Neural Wiskott–Aldrich syndrome protein (N-WASP) and WAVE are members of a family of proteins that use the Arp2/3 complex to stimulate actin assembly in actin-based motile processes. By entering into distinct macromolecular complexes, they act as convergent nodes of different signalling pathways. The role of WAVE in generating lamellipodial protrusion(More)
Wiskott-Aldrich syndrome protein (WASP)/Scar family proteins promote actin polymerization by stimulating the actin-nucleating activity of the Arp2/3 complex. While Scar/WAVE proteins are thought to be involved in lamellipodia protrusion, the hematopoietic WASP has been implicated in various actin-based processes such as chemotaxis, podosome formation, and(More)
Enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC), two closely related diarrhoeagenic pathogens, induce actin rearrangements at the surface of infected host cells resulting in the formation of pseudopod-like structures termed pedestals beneath intimately attached bacteria. We have shown previously that N-WASP, a key integrator(More)
Dynamic actin rearrangements are initiated and maintained by actin filament nucleators, including the Arp2/3-complex. This protein assembly is activated in vitro by distinct nucleation-promoting factors such as Wiskott-Aldrich syndrome protein/Scar family proteins or cortactin, but the relative in vivo functions of each of them remain controversial. Here,(More)
Cell motility entails the extension of cytoplasmic processes, termed lamellipodia and filopodia. Extension is driven by actin polymerisation at the tips of these processes via molecular complexes that remain to be characterised. We show here that a green fluorescent protein (GFP) fusion of the Wiskott-Aldrich syndrome protein family member Scar1/WAVE1 is(More)
Activation of c-Met, the hepatocyte growth factor (HGF)/scatter factor receptor induces reorganization of the actin cytoskeleton, which drives epithelial cell scattering and motility and is exploited by pathogenic Listeria monocytogenes to invade nonepithelial cells. However, the precise contributions of distinct Rho-GTPases, the phosphatidylinositol(More)
Cytoskeleton Dynamics Group, Signalling and Motility Group, Helmholtz Centre for Infection Research, Inhoffen Straße 7, D-38124 Braunschweig, Germany; IFOM Foundation, The FIRC Institute for Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Institute of Molecular Biotechnology, Austrian Academy of Sciences, Dr. Bohr Gasse 3, A-1030 Vienna, Austria;(More)
Aqueous extracts of 25 marine sponge species (from coral reefs of Papua New Guinea) were screened for proteolytic activity. Only one sponge, Callyspongia schulzi, showed remarkable activity. A protease hydrolyzing casein as well as the synthetic substrate alpha-N-benzoyl-L-arginine ethyl ester was isolated from the sponge extract by gel filtration,(More)
  • 1