Stefanie Allert

  • Citations Per Year
Learn More
Multiple types of microbial infections in humans are caused by viruses, bacteria, fungi, or parasites. The outcome of these infections is largely determined by the genomes of the pathogen and host and the appropriate expression of their genes. As both host and microbe have to dynamically respond to changing conditions during the course of an infection,(More)
The metabolic flexibility of the opportunistic fungal pathogen Candida albicans is important for colonisation and infection of different host niches. Complex regulatory networks, in which protein kinases play central roles, link metabolism and other virulence-associated traits, such as filamentous growth and stress resistance, and thereby control(More)
Candida glabrata currently ranks as the second most frequent cause of invasive candidiasis. Our previous work has shown that C. glabrata is adapted to intracellular survival in macrophages and replicates within non-acidified late endosomal-stage phagosomes. In contrast, heat killed yeasts are found in acidified matured phagosomes. In the present study, we(More)
Candida glabrata is both a human fungal commensal and an opportunistic pathogen which can withstand activities of the immune system. For example, C. glabrata can survive phagocytosis and replicates within macrophages. However, the mechanisms underlying intracellular survival remain unclear. In this work, we used a functional genomic approach to identify C.(More)
The pathology of vulvovaginal candidiasis (VVC) caused by Candida albicans is associated with a nonprotective inflammatory response and is frequently treated with clotrimazole. We investigated the mechanisms by which clotrimazole resolves VVC. Low levels of clotrimazole, which do not block fungal growth, inhibit expression of a "danger response"(More)
Extracellular matrix deposition during tubulointerstitial fibrosis (TIF), a central pathological process in patients with diabetic nephropathy (DN), is driven by locally activated, disease-relevant myofibroblasts. Myofibroblasts can arise from various cellular sources, e.g., tubular epithelial cells via a process named epithelial-to-mesenchymal transition(More)
  • 1