Learn More
BACKGROUND/AIMS High-fat dietary intake and low physical activity lead to insulin resistance, nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Recent studies have shown an effect of glucagon-like peptide-1 (GLP-1) on hepatic glucose metabolism, although GLP-1 receptors (GLP-1r) have not been found in human livers. The aim of(More)
Insulin resistance induces nonalcoholic fatty liver disease and nonalcoholic steatohepatitis (NASH). We used a high-fat, high-calorie solid diet (HFD) to create a model of insulin resistance and NASH in nongenetically modified rats and to study the relationship between visceral adipose tissue and liver. Obesity and insulin resistance occurred in HFD rats,(More)
Oxidative stress is associated with liver fibrosis and with hepatic stellate cell (HSC) activation in vivo. However, it remains controversial whether oxidative stress contributes to HSC activation either directly or through a paracrine stimulation by damaged hepatocytes. A medium containing products released from cells undergoing oxidative stress was(More)
BACKGROUND/AIMS Reactive oxygen species (ROS) induce HSCs activation, proliferation and collagen gene expression in vitro. Nitric oxide (NO) represents a reactive molecule that reacts with ROS, yielding peroxynitrite. We thus verified the effect of NO on ROS-induced HSCs proliferation in vitro and correlated iNOS expression and ROS formation to HSCs(More)
UNLABELLED Nonalcoholic fatty liver disease (NAFLD) may lead to hepatic fibrosis. Dietary habits affect gut microbiota composition, whereas endotoxins produced by Gram-negative bacteria stimulate hepatic fibrogenesis. However, the mechanisms of action and the potential effect of microbiota in the liver are still unknown. Thus, we sought to analyze whether(More)
Acetaldehyde is fibrogenic and induces the expression of type I collagen genes in hepatic stellate cells. Some of these acetaldehyde-dependent events are mediated by H(2)O(2) and thus establish a direct connection between oxidative stress and collagen upregulation. We localized to the -378 to -183 region of the alpha2(I) collagen (COL1A2) promoter an(More)
BACKGROUND AND AIMS Progression of chronic cholestatic disorders towards ductopenia results from the dysregulation of cholangiocyte survival, with cell death by apoptosis prevailing over compensatory proliferation. Currently, no therapy is available to sustain cholangiocyte survival in the course of those disorders. It was recently shown that cholangiocytes(More)
BACKGROUND & AIMS Cholangiocyte proliferation plays a role in the progression of cholangiopathies, in particular in primary sclerosing cholangitis. The mechanisms regulating cholangiocyte proliferation are still undefined. Pancreatic Duodenal Homeobox protein 1 (PDX-1) is expressed by reactive cholangiocytes. In the adult pancreas, PDX-1 regulates the(More)
BACKGROUND & AIMS Hepatic stellate cell (HSC) proliferation is a key event in the development of liver fibrosis. In many liver diseases, HSCs are exposed to inflammatory cytokines, reactive oxygen species, and bile acids. Although inflammatory cytokines and reactive oxygen species are known to promote proliferation of HSCs, nothing is known about the(More)
Ethanol induces liver fibrosis by several means that include, among others, the direct fibrogenic action of acetaldehyde on hepatic stellate cells (HSC). However the mechanisms responsible for this effect are not well understood. In this communication we investigated signal transduction pathways triggered by acetaldehyde leading to upregulation of alpha2(I)(More)