Stefania Ferro

Learn More
BACKGROUND AND OBJECTIVES Photodynamic therapy (PDT) appears to be endowed with several favorable features for the treatment of infections originated by microbial pathogens, including a broad spectrum of action, the efficient inactivation of antibiotic-resistant strains, the low mutagenic potential, and the lack of selection of photoresistant microbial(More)
The uptake of two photosensitising agents (hematoporphyrin and chlorophyll a) by a highly pathogenic bacterium, namely methicillin-resistant Staphylococcus aureus (MRSA), has been studied by using unilamellar liposomes of different size, fluidity and electric charge as carriers. Optimal results are obtained by using hematoporphyrin embedded in fluid(More)
Epilepsy is a common neurological disorder caused by an imbalance between inhibitory and excitatory neurotransmission. It is well known that neuronal excitability is related to γ-aminobutyric acid (GABA)ergic depolarization. HCO3 (-) -dependent depolarization can be suppressed by membrane-permeable inhibitors of carbonic anhydrase. We previously identified(More)
The cellular protein lens epithelium-derived growth factor, or transcriptional coactivator p75 (LEDGF/p75), plays a crucial role in HIV integration. The protein-protein interactions (PPIs) between HIV-1 integrase (IN) and its cellular cofactor LEDGF/p75 may therefore serve as targets for the development of new anti-HIV drugs. In this work, a structure-based(More)
Antimicrobial photodynamic therapy is emerging as a promising therapeutic modality for bacterial infections. For optimizing the antibacterial activity of the photosensitizer m-tetrahydroxyphenylchlorin, it has been encapsulated in mixed cationic liposomes composed of different ratios of dimyristoyl- sn-glycero-phosphatidylcholine and any of four cationic(More)
Antimicrobial photodynamic therapy is emerging as a promising therapeutic modality for bacterial infections. Our studies aim at identifying strategies for optimizing the antibacterial activity of porphyrin-type photosensitisers. The photoinactivation properties of a novel, positively charged meso-substituted porphyrin, namely(More)
Studies on the synthesis, structural elucidation, and biological evaluation of new conjugates of poly-S-lysine with meso-substituted porphyrins are described. The new conjugates were used in the photoinactivation of antibiotic-resistant Gram-positive bacteria (Staphylococcus aureus strains ATCC 25923 and MRSA 110) and Gram-negative bacteria (Escherichia(More)
Using a training set of diketo-like acid HIV-1 integrase (IN) strand-transfer inhibitors, a 3D pharmacophore model was derived having quantitative predictive ability in terms of activity. The best statistical hypothesis consisted of four features (one hydrophobic aromatic region, two hydrogen-bond acceptors, and one hydrogen-bond donor) with r of 0.96. The(More)
Recent findings suggest that visible light-promoted photooxidative processes mediated by sensitizers of appropriate chemical structure could represent a useful tool for properly addressing the problem of the increasing occurrence of infectious diseases caused by multiantibiotic-resistant microbial pathogens. The monocationic meso-substituted porphyrin(More)
Treatment of feline immunodeficiency virus (FIV) infection has been hampered by the absence of a specific combination antiretroviral treatment (ART). Integrase strand transfer inhibitors (INSTIs) are emerging as a promising new drug class for HIV-1 treatment, and we evaluated the possibility of inhibiting FIV replication using INSTIs. Phylogenetic analysis(More)