Learn More
BACKGROUND Differentiation processes are responsible for the diversity and functional specialization of the cell types that compose an organism. The outcome of these processes can be studied at molecular, physiologic, and biochemical levels by comparing different cell types, but the complexity and dynamics of the regulatory processes that specify the(More)
BACKGROUND MADS domain transcription factors play important roles in various developmental processes in flowering plants. Members of this family play a prominent role in the transition to flowering and the specification of floral organ identity. Several studies reported mRNA expression patterns of the genes encoding these MADS domain proteins, however,(More)
The apical-basal axis of the Arabidopsis gynoecium is established early during development and is divided into four elements from the bottom to the top: the gynophore, the ovary, the style, and the stigma. Currently, it is proposed that the hormone auxin plays a critical role in the correct apical-basal patterning through a concentration gradient from the(More)
BACKGROUND Plant MADS box proteins play important roles in a plethora of developmental processes. In order to regulate specific sets of target genes, MADS box proteins dimerize and are thought to assemble into multimeric complexes. In this study a large-scale yeast three-hybrid screen is utilized to provide insight into the higher-order complex formation(More)
BACKGROUND The myocyte enhancer factor 2 (MEF2) gene family is broadly expressed during the development and maintenance of muscle cells. Although a great deal has been elucidated concerning MEF2 transcription factors' regulation of specific gene expression in diverse programs and adaptive responses, little is known about the origin and evolution of the four(More)
BACKGROUND Most transcription factors fulfill their role in complexes and regulate their target genes upon binding to DNA motifs located in upstream regions or introns. To date, knowledge about transcription factor target genes and their corresponding transcription factor binding sites are still very limited. Two related methods that allow in vivo(More)
BACKGROUND Small RNAs emerged over the last decade as key regulators in diverse biological processes in eukaryotic organisms. To identify and study small RNAs, good and efficient protocols are necessary to isolate them, which sometimes may be challenging due to the composition of specific tissues of certain plant species. Here we describe a simple and(More)
Analyses of the functions of TEOSINTE-LIKE1, CYCLOIDEA, and PROLIFERATING CELL FACTOR1 (TCP) transcription factors have been hampered by functional redundancy between its individual members. In general, putative functionally redundant genes are predicted based on sequence similarity and confirmed by genetic analysis. In the TCP family, however,(More)
Inoculation of mango trees with Burkholderia caribensis XV and Rhizobium sp. XXV led to mango growth promotion (dry biomass increased in root 89 %, stem 34 %, leaves 51 %, and foliar area 53 %), floral fate (floral buds 100 %), and increased number of flowers (100 %). Nitrogen content in leaves was similar in inoculated and noninoculated trees, around 1.4 %(More)
MADS domain proteins are transcription factors that coordinate several important developmental processes in plants. These proteins interact with other MADS domain proteins to form dimers, and it has been proposed that they are able to associate as tetrameric complexes that regulate transcription of target genes. Whether the formation of functional tetramers(More)