Stefan Zauner

Learn More
Chromophyte algae differ fundamentally from plants in possessing chloroplasts that contain chlorophyll c and that have a more complex bounding-membrane topology. Although chromophytes are known to be evolutionary chimaeras of a red alga and a non-photosynthetic host, which gave rise to their exceptional membrane complexity, their cell biology is poorly(More)
Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to(More)
The diatom Phaeodactylum tricornutum harbors a plastid that is surrounded by four membranes and evolved by way of secondary endosymbiosis. Like land plants, most of its plastid proteins are encoded as preproteins on the nuclear genome of the host cell and are resultantly redirected into the organelle. Because two more membranes are present in diatoms than(More)
Chromist algae (stramenopiles, cryptophytes, and haptophytes) are major contributors to marine primary productivity. These eukaryotes acquired their plastid via secondary endosymbiosis, whereby an early-diverging red alga was engulfed by a protist and the plastid was retained and its associated nuclear-encoded genes were transferred to the host genome.(More)
The cryptophyte Guillardia theta harbors a plastid surrounded by four membranes. This turns protein targeting of nucleus-encoded endosymbiont localized proteins into quite a challenge, as the respective precursors have to pass either all four membranes to reach the plastid stroma or only the outermost two membranes to enter the periplastidal compartment.(More)
Cells of several major algal groups are evolutionary chimeras of two radically different eukaryotic cells. Most of these "cells within cells" lost the nucleus of the former algal endosymbiont. But after hundreds of millions of years cryptomonads still retain the nucleus of their former red algal endosymbiont as a tiny relict organelle, the nucleomorph,(More)
Most of the coding capacity of primary plastids is reserved for expressing some central components of the photosynthesis machinery and the translation apparatus. Thus, for the bulk of biochemical and cell biological reactions performed within the primary plastids, many nucleus-encoded components have to be transported posttranslationally into the organelle.(More)
Sedoheptulose-1,7-bisphosphatase (SBPase) and fructose-1,6-bisphosphatase (FBPase) are essential nuclear-encoded enzymes involved in land plant Calvin cycle and gluconeogenesis. In this study, we cloned seven SBP and seven FBP cDNAs/genes and established sequences from all lineages of photosynthetic eukaryotes, in order to investigate their origin and(More)
Many protists with high ecological and medical relevance harbor plastids surrounded by four membranes. Thus, nucleus-encoded proteins of these complex plastids have to traverse these barriers. Here we report on the identification of the protein translocators located in two of the plastid surrounding membranes and present recent findings on the mechanisms of(More)
Algae with secondary plastids such as diatoms maintain two different eukaryotic cytoplasms. One of them, the so-called periplastidal compartment (PPC), is the naturally minimized cytoplasm of a eukaryotic endosymbiont. In order to investigate the protein composition of the PPC of diatoms, we applied knowledge of the targeting signals of PPC-directed(More)