Learn More
These lectures given to graduate students in high energy physics, provide an introduction to Monte Carlo methods. After an overview of classical numerical quadrature rules, Monte Carlo integration together with variance-reducing techniques is introduced. A short description on the generation of pseudo-random numbers and quasi-random numbers is given.(More)
We report on a program for the numerical evaluation of divergent multi-loop integrals. The program is based on iterated sector decomposition. We improve the original algorithm of Binoth and Heinrich such that the program is guaranteed to terminate. The program can be used to compute numerically the Laurent expansion of divergent multi-loop integrals(More)
Multiple polylogarithms appear in analytic calculations of higher order corrections in quantum field theory. In this article we study the numerical evaluation of multiple polylogarithms. We provide algorithms, which allow the evaluation for arbitrary complex arguments and without any restriction on the weight. We have implemented these algorithms with(More)
We present an implementation of a parton shower algorithm for hadron colliders and electron-positron colliders based on the dipole factorisation formulae. The algorithm treats initial-state partons on equal footing with final-state partons. We implemented the algorithm for massless and massive partons.
In this talk we discuss sector decomposition. This is a method to disentangle overlapping singularities through a sequence of blow-ups. We report on an open-source implementation of this algorithm to compute numerically the Laurent expansion of divergent multi-loop integrals. We also show how this method can be used to prove a theorem which relates the(More)
Higher transcendental function occur frequently in the calculation of Feynman integrals in quantum field theory. Their expansion in a small parameter is a non-trivial task. We report on a computer program which allows the systematic expansion of certain classes of functions. The algorithms are based on the Hopf algebra of nested sums. The program is written(More)
Perturbative calculations at next-to-next-to-leading order for multi-particle final states require a method to cancel infrared singularities. I discuss the subtraction method at NNLO. As a concrete example I consider the leading-colour contributions to e + e − → 2 jets. This is the simplest example which exhibits all essential features. For this example,(More)