Stefan Thiel

Learn More
Experimental and theoretical investigations have demonstrated that a quasi-two-dimensional electron gas (q-2DEG) can form at the interface between two insulators: non-polar SrTiO3 and polar LaTiO3 (ref. 2), LaAlO3 (refs 3-5), KTaO3 (ref. 7) or LaVO3 (ref. 6). Electronically, the situation is analogous to the q-2DEGs formed in semiconductor heterostructures(More)
Interfaces between complex oxides are emerging as one of the most interesting systems in condensed matter physics. In this special setting, in which translational symmetry is artificially broken, a variety of new and unusual electronic phases can be promoted. Theoretical studies predict complex phase diagrams and suggest the key role of the charge carrier(More)
At interfaces between complex oxides, electronic systems with unusual electronic properties can be generated. We report on superconductivity in the electron gas formed at the interface between two insulating dielectric perovskite oxides, LaAlO3 and SrTiO3. The behavior of the electron gas is that of a two-dimensional superconductor, confined to a thin sheet(More)
We report on a large electric-field response of quasi-two-dimensional electron gases generated at interfaces in epitaxial heterostructures grown from insulating oxides. These device structures are characterized by doping layers that are spatially separated from high-mobility quasi-two-dimensional electron gases and therefore present an oxide analog to(More)
A screw dislocation network at the low-angle SrTiO3/Nb:SrTiO3 twist grain boundary has been analyzed by annular dark field (ADF) imaging and spatially resolved electron energy loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM). The cores of one set of dislocations running parallel to the beam direction appear dark in the ADF STEM(More)
Matriptase, also known as membrane-type-serine-protease 1 (MT-SP 1), is a type II transmembrane serine protease involved in the activation of the precursor form of hepatocyte growth factor/scatter factor (pro-HGF/SF). Since HGF/SF is a well-known extracellular signal, which plays a key role in the control of invasive growth, we investigated the effects of(More)
Recombinant vaccines containing Ii sequences were employed to elicit an antibody response. Gene gun immunisation of mice with the recombinant Ii-antigen-encoding vectors induced antigen-specific antibodies. Antibody levels were substantially elevated when the DNA construct was extended by a sequence encoding the protease inhibitory domain of the invariant(More)
In 2004, Ohtomo and Hwang discovered that an electron gas is created at the interface between insulating LaAlO3 and SrTiO3 compounds. Here we show that the generation of a conducting electron gas is related to an orbital reconstruction occurring at the LaAlO3/SrTiO3 interface. Our results are based on extensive investigations of the electronic properties(More)
The conducting interface of LaAlO3/SrTiO3 heterostructures has been studied by hard x-ray photoelectron spectroscopy. From the Ti 2p signal and its angle dependence we derive that the thickness of the electron gas is much smaller than the probing depth of 4 nm and that the carrier densities vary with increasing number of LaAlO3 overlayers. Our results point(More)
In the present study the importance of the active site histidine residue (His) for the activity of epoxide- or aziridine-based cysteine protease inhibitors is examined theoretically. To account for all important effects, QM/MM hybrid approaches are employed which combine quantum mechanical (QM) methods that are necessary to describe bond-breaking and(More)