Learn More
BACKGROUND Colorectal cancer (CRC) is with approximately 1 million cases the third most common cancer worldwide. Extensive research is ongoing to decipher the underlying genetic patterns with the hope to improve early cancer diagnosis and treatment. In this direction, the recent progress in next generation sequencing technologies has revolutionized the(More)
UNLABELLED Prostate cancer is the second most common cancer among men worldwide. Alterations in the DNA methylation pattern can be one of the leading causes for prostate cancer formation. This study is the first high-throughput sequencing study investigating genome-wide DNA methylation patterns in a large cohort of 51 tumor and 53 benign prostate samples(More)
MiRNAs are discussed as diagnostic and therapeutic molecules. However, effective miRNA drug treatments with miRNAs are, so far, hampered by the complexity of the miRNA networks. To identify potential miRNA drugs in colorectal cancer, we profiled miRNA and mRNA expression in matching normal, tumor and metastasis tissues of eight patients by Illumina(More)
BACKGROUND Overexpression of ERG transcription factor due to genomic ERG-rearrangements defines a separate molecular subtype of prostate tumors. One of the consequences of ERG accumulation is modulation of the cell's gene expression profile. Tudor domain-containing protein 1 gene (TDRD1) was reported to be differentially expressed between(More)
The normal prostate as well as early stages and advanced prostate cancer (PCa) require a functional androgen receptor (AR) for growth and survival. The recent discovery of microRNAs (miRNAs) as novel effector molecules of AR disclosed the existence of an intricate network between AR, miRNAs and downstream target genes. In this study DUCaP cells,(More)
The regulation of gene expression in response to nutrient availability is fundamental to the genotype-phenotype relationship. The metabolic-genetic make-up of the cell, as reflected in auxotrophy, is hence likely to be a determinant of gene expression. Here, we address the importance of the metabolic-genetic background by monitoring transcriptome, proteome(More)
The heat shock protein 90 (Hsp90) is required for the stability of many signalling kinases. As a target for cancer therapy it allows the simultaneous inhibition of several signalling pathways. However, its inhibition in healthy cells could also lead to severe side effects. This is the first comprehensive analysis of the response to Hsp90 inhibition at the(More)
The epigenetic sensor BRD4 (bromodomain protein 4) is a potent target for anti-cancer therapies. To study the transcriptional impact of BRD4 in cancer, we generated an expression signature of BRD4 knockdown cells and found oxidative stress response genes significantly enriched. We integrated the RNA-Seq results with DNA-binding sites of BRD4 generated by(More)
For the first time, the development of next-generation sequencing technologies has brought about tools to investigate epigenetic alterations in an unbiased, yet genome-wide approach. The importance of this innovative technology is undeniable since it has already been established that changes in DNA methylation play an important role in cancer initiation and(More)
The identification of new biomarkers to differentiate between indolent and aggressive prostate tumors is an important unmet need. We examined the role of THOR (TERT Hypermethylated Oncological Region) as a diagnostic and prognostic biomarker in prostate cancer (PCa).We analyzed THOR in common cancers using genome-wide methylation arrays. Methylation status(More)