Stefan Tümpel

Learn More
Sequence divergence in cis-regulatory elements is an important mechanism contributing to functional diversity of genes during evolution. Gene duplication and divergence provide an opportunity for selectively preserving initial functions and evolving new activities. Many vertebrates have 39 Hox genes organized into four clusters (Hoxa-Hoxd); however, some(More)
In the vertebrate central nervous system, the hindbrain is an important center for coordinating motor activity, posture, equilibrium, sleep patterns, and essential unconscious functions, such as breathing rhythms and blood circulation. During development, the vertebrate hindbrain depends upon the process of segmentation or compartmentalization to create and(More)
The Hoxa2 gene is an important component of regulatory events during hindbrain segmentation and head development in vertebrates. In this study we have used sequenced comparisons of the Hoxa2 locus from 12 vertebrate species in combination with detailed regulatory analyses in mouse and chicken embryos to characterize the mechanistic basis for the regulation(More)
Tbx3, a T-box gene family member related to the Drosophila gene optomotor blind (omb) and encoding a transcription factor, is expressed in anterior and posterior stripes in developing chick limb buds. Tbx3 haploinsufficiency has been linked with the human condition ulnar-mammary syndrome, in which predominantly posterior defects occur in the upper limb. Omb(More)
The Hoxb1 autoregulatory enhancer directs segmental expression in vertebrate hindbrain. Three conserved repeats (R1, R2, and R3) in the enhancer have been described as Pbx-Hoxb1 (PH) binding sites, and one Pbx-Meinox (PM) binding site has also been characterized. We have investigated the importance and relative roles of PH and PM binding sites with respect(More)
During anteroposterior (AP) patterning of the developing hindbrain, the expression borders of many transcription factors are aligned at interfaces between neural segments called rhombomeres (r). Mechanisms regulating segmental expression have been identified for Hox genes, but for other classes of AP patterning genes there is only limited information. We(More)
Here, we define a gene regulatory network for Hoxa2, responsible for temporal and spatial expression in hindbrain development. Hoxa2 plays an important role in regulating the regional identity of rhombomere 2 (r2) and is the only Hox gene expressed in this segment. In this study, we found that a Hoxa2 cis-regulatory module consists of five elements that(More)
The Hoxa2 and Hoxb2 genes are members of paralogy group II and display segmental patterns of expression in the developing vertebrate hindbrain and cranial neural crest cells. Functional analyses have demonstrated that these genes play critical roles in regulating morphogenetic pathways that direct the regional identity and anteroposterior character of(More)
During early zebrafish development the nodal signalling pathway patterns the embryo into three germ layers, in part by inducing the expression of no tail (ntl), which is essential for correct mesoderm formation. When nodal signalling is inhibited ntl fails to be expressed in the dorsal margin, but ventral ntl expression is unaffected. These observations(More)
Hoxa2 gene is a primary player in regulation of craniofacial programs of head development in vertebrates. Here we investigate the evolution of a Hoxa2 neural crest enhancer identified originally in mouse by comparing and contrasting the fugu hoxa2a and hoxa2b genes with their orthologous teleost and mammalian sequences. Using sequence analyses in(More)