Stefan Schnabel

Learn More
Within the frame of an effective, coarse-grained hydrophobic-polar protein model, we employ multicanonical Monte Carlo simulations to investigate free-energy landscapes and folding channels of exemplified heteropolymer sequences, which are permutations of each other. Despite the simplicity of the model, the knowledge of the free-energy landscape in(More)
Inspired by recent studies revealing unexpected pliability of semiflexible biomolecules like RNA and DNA, we systematically investigate the range of structural phases by means of a simple generic polymer model. Using a two-dimensional variant of Wang-Landau sampling to explore the conformational space in energy and stiffness within a single simulation, we(More)
We investigate solid-solid and solid-liquid transitions of elastic flexible off-lattice polymers with Lennard-Jones monomer-monomer interaction and anharmonic springs by means of sophisticated variants of multicanonical Monte Carlo methods. We find that the low-temperature behavior depends strongly and nonmonotonically on the system size and exhibits broad(More)
We introduce a systematic classification method for the analogs of phase transitions in finite systems. This completely general analysis, which is applicable to any physical system and extends toward the thermodynamic limit, is based on the microcanonical entropy and its energetic derivative, the inverse caloric temperature. Inflection points of this(More)
Investigating thermodynamic properties of liquid–solid transitions of flexible homopolymers with elastic bonds by means of multicanonical Monte Carlo simulations, we find crystalline conformations that resemble ground-state structures of Lennard-Jones clusters. This allows us to set up a structural classification scheme for finite-length flexible polymers(More)