Stefan P J Dullens

Learn More
Dyslipidemia leading to coronary heart diseases (CHD) enables venues to prevent or treat CHD by other strategies than only lowering serum LDL cholesterol (LDL-C) concentrations, which is currently the most frequently targeted change. Unlike LDL-C, elevated high-density lipoprotein cholesterol (HDL-C) concentrations may protect against the development of CHD(More)
OBJECTIVE Epidemiological studies have convincingly demonstrated a positive association between LDL-cholesterol (LDL-C) and coronary artery disease but, in the case of HDL-C, there is an inverse association. Administration of high doses of the antifungal agent ketoconazole (800 mg/d) reduces serum concentrations of total cholesterol and LDL-C and there is a(More)
BACKGROUND Increasing HDL cholesterol concentrations by stimulating de-novo apolipoprotein A-I (apoA-I) production in the liver and/or in the small intestine is a potential strategy to reduce coronary heart disease risk. Although there is quite some knowledge concerning regulatory effects in the liver, less is known concerning potential agents that could(More)
Short-term thrombotic occlusion and compliance mismatch hamper clinical use of synthetic small-diameter tissue engineered vascular grafts. It is felt that preconditioning of the graft with intimal (endothelial) and medial (vascular smooth muscle) cells contributes to patency of the graft. Autologous, non-vessel-derived cells are preferred because of(More)
Policosanol is a mixture of long-chain primary aliphatic saturated alcohols. Previous studies in humans and animals have shown that these compounds improved lipoprotein profiles. However, more-recent placebo-controlled studies could not confirm these promising effects. Octacosanol (C28), the main component of sugarcane-derived policosanol, is assumed to be(More)
Increasing apolipoproteinA-I (apoA-I) production may be anti-atherogenic. Thus, there is a need to identify regulatory factors involved. Transcription of apoA-I involves peroxisome-proliferator-activated-receptor-alpha (PPARα) activation, but endoplasmic reticulum (ER) -stress and inflammation also influence apoA-I production. To unravel why PPARα agonist(More)
  • 1