Learn More
Rationale: Although research suggests that diastolic Ca levels might be increased in atrial fibrillation (AF), this hypothesis has never been tested. Diastolic Ca leak from the sarcoplasmic reticulum (SR) might increase diastolic Ca levels and play a role in triggering or maintaining AF by transient inward currents through Na /Ca exchange. In ventricular(More)
RATIONALE Although research suggests that diastolic Ca(2+) levels might be increased in atrial fibrillation (AF), this hypothesis has never been tested. Diastolic Ca(2+) leak from the sarcoplasmic reticulum (SR) might increase diastolic Ca(2+) levels and play a role in triggering or maintaining AF by transient inward currents through Na(+)/Ca(2+) exchange.(More)
BACKGROUND Transgenic (TG) Ca/calmodulin-dependent protein kinase II (CaMKII)delta(C) mice have heart failure and isoproterenol (ISO)-inducible arrhythmias. We hypothesized that CaMKII contributes to arrhythmias and underlying cellular events and that inhibition of CaMKII reduces cardiac arrhythmogenesis in vitro and in vivo. METHODS AND RESULTS Under(More)
RATIONALE Myocardial diastolic stiffness and cardiomyocyte passive force (F(passive)) depend in part on titin isoform composition and phosphorylation. Ca(2+)/calmodulin-dependent protein kinase-II (CaMKII) phosphorylates ion channels, Ca(2+)-handling proteins, and chromatin-modifying enzymes in the heart, but has not been known to target titin. OBJECTIVE(More)
Acute and chronic injuries to the heart result in perturbation of intracellular calcium signaling, which leads to pathological cardiac hypertrophy and remodeling. Calcium/calmodulin-dependent protein kinase II (CaMKII) has been implicated in the transduction of calcium signals in the heart, but the specific isoforms of CaMKII that mediate pathological(More)
Phosphatase inhibitor-1 (I-1) is a distal amplifier element of beta-adrenergic signaling that functions by preventing dephosphorylation of downstream targets. I-1 is downregulated in human failing hearts, while overexpression of a constitutively active mutant form (I-1c) reverses contractile dysfunction in mouse failing hearts, suggesting that I-1c may be a(More)
Excitation–contraction coupling is the process by which electrical activation is translated into contraction of a cardiac myocyte and thus the heart. In heart failure, expression, phosphorylation, and function of several intracellular proteins that are involved in excitation–contraction coupling are altered. The present review article summarizes central(More)
BACKGROUND Atrial fibrillation (AF) is a growing public health problem without adequate therapies. Angiotensin II and reactive oxygen species are validated risk factors for AF in patients, but the molecular pathways connecting reactive oxygen species and AF are unknown. The Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) has recently emerged as a(More)
BACKGROUND The recent breakthrough in the generation of induced pluripotent stem (iPS) cells, which are almost indistinguishable from embryonic stem (ES) cells, facilitates the generation of murine disease- and human patient-specific stem cell lines. The aim of this study was to characterize the cardiac differentiation potential of a murine iPS cell clone(More)
In heart failure therapy, it is generally assumed that attempts to produce a long-term increase in cardiac contractile force are almost always accompanied by structural and functional damage. Here we show that modest overexpression of the Raf kinase inhibitor protein (RKIP), encoded by Pebp1 in mice, produces a well-tolerated, persistent increase in cardiac(More)