Learn More
In recent years, methicillin-resistant Staphylococcus aureus (MRSA) have become a truly global challenge. In addition to the long-known healthcare-associated clones, novel strains have also emerged outside of the hospital settings, in the community as well as in livestock. The emergence and spread of virulent clones expressing Panton-Valentine leukocidin(More)
Worldwide, methicillin-resistant Staphylococcus aureus (MRSA) pose an increased risk for healthcare- and community-associated infections. Since the first report of MRSA in England in 1961, several distinct clones or strains have emerged. Changes within the MRSA population of whole countries, small regions or of single hospitals have been observed with some(More)
Staphylococcus aureus encodes a remarkable number of virulence factors which may contribute to its pathogenicity and ability to cause invasive disease. The main objective of this study was to evaluate the association between S. aureus invasiveness and bacterial genotype, in terms of the presence of virulence genes and affiliation to clonal complexes. Also,(More)
Methicillin-resistant Staphylococcus aureus (MRSA) is spreading worldwide and poses a serious public health problem, being present in hospital settings and communities. However, from the Middle East and the Arabian Peninsula few molecular typing data on MRSA strains are currently available. In order to obtain data on the population structure of MRSA in(More)
Staphylococcus aureus is one of the major pathogens that causes bacteremia; therefore, it is important to understand the long-term molecular epidemiology of S. aureus bacteremia infections. In particular, little is known about the population structure of methicillin-sensitive S. aureus (MSSA) compared to that of methicillin-resistant S. aureus. We(More)
Staphylococcus aureus is a leading cause of surgical site infections (SSIs). The association between S. aureus genotypes and the severity of illness is, however, incompletely understood. The aim of the study was to genotype S. aureus isolates from deep SSI in orthopaedic patients to identify molecular markers associated with invasive S. aureus infections.(More)
BACKGROUND Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) was first reported in remote regions of Western Australia and is now the predominant MRSA isolated in the state. The objective of this study is to determine the genetic relatedness of Western Australian CA-MRSA clones within different multilocus sequence type (MLST) clonal(More)
Recently, a novel mec gene conferring beta-lactam resistance in Staphylococcus aureus has been discovered. This gene, mecC, is situated on a SCCmec XI element that has to date been identified in clonal complexes 49, 130, 425, 599 and 1943. Some of the currently known isolates have been identified from animals. This, and observations of mecA alleles that do(More)
Staphylococcus aureus isolates from two prospective studies on infective endocarditis (IE) conducted in 1999 and 2008 and isolated from non-IE bacteremia collected in 2006 were spa-typed and their virulence factors were analyzed with a microarray. Both populations were genetically diverse, with no virulence factors or genotypes significantly more associated(More)
In Australia the PVL-positive ST93-IV [2B], colloquially known as "Queensland CA-MRSA" has become the dominant CA-MRSA clone. First described in the early 2000s, ST93-IV [2B] is associated with skin and severe invasive infections including necrotizing pneumonia. A singleton by multilocus sequence typing (MLST) eBURST analysis ST93 is distinct from other S.(More)