Learn More
The Partitioned Global Address Space (PGAS) model is a parallel programming model that aims to improve programmer productivity while at the same time aiming for high performance. The main premise of PGAS is that a globally shared address space improves productivity, but that a distinction between local and remote data accesses is required to allow(More)
Research on language implementation techniques has regained importance with the rise of domain-specific languages (DSLs). Although DSLs can help manage a domain's complexity, building highly optimizing compilers or virtual machines is rarely affordable. So, performance remains an issue. Ideally, you would implement a simple interpreter and still be able to(More)
Runtime metaprogramming enables many useful applications and is often a convenient solution to solve problems in a generic way, which makes it widely used in frameworks, middleware, and domain-specific languages. However, powerful metaobject protocols are rarely supported and even common concepts such as reflective method invocation or dynamic proxies are(More)
This paper introduces the SOM (Simple Object Machine) family of virtual machine (VM) implementations, a collection of VMs for the same Smalltalk dialect addressing students at different levels of expertise. Starting from a Java-based implementation, several ports of the VM to different programming languages have been developed and put to successful use in(More)
Today, software engineering practices focus on finding the single ``right'' data representation for a program. The ``right'' data representation, however, might not exist: changing the representation of an object during program execution can be better in terms of performance. To this end we introduce Just-in-Time Data Structures, which(More)
Today's major high-level language virtual machines (VMs) are becoming successful in being multi-language execution platforms, hosting a wide range of languages. With the transition from few-core to many-core processors, we argue that VMs will also have to abstract from concrete concurrency models at the hardware level, to be able to support a wide range of(More)
Comparing the performance of programming languages is difficult because they differ in many aspects including preferred programming abstractions, available frameworks, and their runtime systems. Nonetheless, the question about relative performance comes up repeatedly in the research community, industry, and wider audience of enthusiasts. This paper(More)
Modern development environments promote live programming (LP) mechanisms because it enhances the development experience by providing instantaneous feedback and interaction with live objects. LP is typically supported with advanced reflective techniques within dynamic languages. These languages run on top of Virtual Machines (VMs) that are built in a static(More)
Applying imperative programming techniques to process event streams, like those generated by multi-touch devices and 3D cameras, has significant engineering drawbacks. Declarative approaches solve these problems but have not been able to scale on multicore systems while providing guaranteed response times. We propose PARTE, a parallel scalable complex(More)
Now that multicore processors are commonplace, developing parallel software has escaped the confines of high-performance computing and enters the mainstream. The Fork/Join framework, for instance, is part of the standard Java platform since version 7. Fork/Join is a high-level parallel programming model advocated to make parallelizing recursive(More)