Stefan Mairhofer

Learn More
X-ray micro-Computed Tomography (μCT) offers the ability to visualise the three-dimensional structure of plant roots growing in their natural environment – soil. Recovery of root architecture descriptions from X-ray CT data is, however, challenging. The X-ray attenuation values of roots and soil overlap, and the attenuation values of root material vary. Any(More)
Manually creating test cases is time consuming and error prone. Search-based software testing can help automate this process and thus reduce time and effort and increase quality by automatically generating relevant test cases. Previous research has mainly focused on static programming languages and simple test data inputs such as numbers. This is not(More)
X-ray Computed Tomography (CT) is a non-destructive imaging technique originally designed for diagnostic medicine, which was adopted for rhizosphere and soil science applications in the early 1980s. X-ray CT enables researchers to simultaneously visualise and quantify the heterogeneous soil matrix of mineral grains, organic matter, air-filled pores and(More)
A commonly accepted challenge when visualising plant roots in X-ray micro Computed Tomography (μCT) images is the similar X-ray attenuation of plant roots and soil phases. Soil moisture content remains a recognised, yet currently uncharacterised source of segmentation error. This work sought to quantify the effect of soil moisture content on the ability to(More)
We propose a visual object tracking framework for the extraction of multiple interacting plant root systems from three-dimensional X-ray micro computed tomography images of plants grown in soil. Our method is based on a level set framework guided by a greyscale intensity distribution model to identify object boundaries in image cross-sections. Root objects(More)
Root system interactions and competition for resources are active areas of research that contribute to our understanding of how roots perceive and react to environmental conditions. Recent research has shown this complex suite of processes can now be observed in a natural environment (i.e. soil) through the use of X-ray microcomputed tomography (μCT), which(More)
  • 1