Stefan M. Duma

Learn More
The objective of this study was to investigate potential for traumatic brain injuries (TBI) using a newly developed, geometrically detailed, finite element head model (FEHM) within the concept of a simulated injury monitor (SIMon). The new FEHM is comprised of several parts: cerebrum, cerebellum, falx, tentorium, combined pia-arachnoid complex (PAC) with(More)
OBJECTIVE To measure and analyze head accelerations during American collegiate football practices and games. METHODS A newly developed in-helmet 6-accelerometer system that transmits data via radio frequency to a sideline receiver and laptop computer system was implemented. From the data transfer of these accelerometer traces, the sideline staff has(More)
The purpose of this study was to quantify both the tensile material properties and structural response of human ribs in order to determine which variables contribute to regional variation in the strength of human ribs. This was done by performing 94 matched tests on human rib specimens; 46 tension coupon tests, 48 three-point bending tests. Contralateral(More)
BACKGROUND Eye injuries affect a large proportion of the population and are expensive to treat. This article presents a parametric analysis of experimental data to determine the most significant factors for predicting ocular injuries or tissue lesions. METHODS Using logistic regression, statistical values were generated to determine significant projectile(More)
CONTEXT Measuring head impact exposure is a critical step toward understanding the mechanism and prevention of sport-related mild traumatic brain (concussion) injury, as well as the possible effects of repeated subconcussive impacts. OBJECTIVE To quantify the frequency and location of head impacts that individual players received in 1 season among 3(More)
Recent research has suggested a possible link between sports-related concussions and neurodegenerative processes, highlighting the importance of developing methods to accurately quantify head impact tolerance. The use of kinematic parameters of the head to predict brain injury has been suggested because they are indicative of the inertial response of the(More)
The purpose of this study was to develop material properties of human rib cortical bone using dynamic tension coupon testing. This study presents 117 human rib cortical bone coupon tests from six cadavers, three male and three female, ranging in age from 18 to 67 years old. The rib sections were taken from the anterior, lateral, and posterior regions on(More)
The purpose of this study was to investigate the biomechanical properties of the human lumbar spine subjected to dynamic compression. A series of six experiments using the lumbar spines from four human cadavers was performed. The first two tests utilized the entire lumbar spine while the remaining four tests used lumbar functional joints to separate the(More)
By incorporating material and geometrical properties into a model of the human thorax one can develop an injury criterion that is a function of stress and strain of the material and not a function of the global response of the thorax. Previous research on the mechanical properties of ribs has focused on a limited set of specific ribs. For this study a total(More)
In American football, impacts to the helmet and the resulting head accelerations are the primary cause of concussion injury and potentially chronic brain injury. The purpose of this study was to quantify exposures to impacts to the head (frequency, location and magnitude) for individual collegiate football players and to investigate differences in head(More)