Stefan Lohmer

  • Citations Per Year
Learn More
The present work describes the engineering and characterization of a new Ca(2+)-activated photoprotein (Photina) and its use in mammalian cell lines for implementation of flash luminescence cell-based assays for high-throughput screening (HTS). When used to measure the activation of 2 G protein-coupled receptors (GPCRs), targeting Photina to the(More)
Intimate bidirectional communication between Sertoli cells and developing germ cells ensures the integrity and efficiency of spermatogenesis. Yet, a conceptual mechanistic understanding of the physiological principles that underlie Sertoli cell autocrine and paracrine signalling is lacking. Here, we characterize a purinergic Ca(2+) signalling network in(More)
In olfactory sensory neurons (OSNs), cytosolic Ca2+ controls the gain and sensitivity of olfactory signaling. Important components of the molecular machinery that orchestrates OSN Ca2+ dynamics have been described, but key details are still missing. Here, we demonstrate a critical physiological role of mitochondrial Ca2+ mobilization in mouse OSNs.(More)
Exogenous expression of pharmacological targets in transformed cell lines has been the traditional platform for high throughput screening of small molecules. However, exogenous expression in these cells is limited by aberrant dosage, or its toxicity, the potential lack of interaction partners, and alterations to physiology due to transformation itself.(More)
The use of engineered mouse embryonic stem (mES) cells in high-throughput screening (HTS) can offer new opportunities for studying complex targets in their native environment, increasing the probability of discovering more meaningful hits. The authors have generated and developed a mouse embryonic stem cell line called c-Photina mES stably expressing a(More)
The tetrameric green fluorescent protein AsGFP(499) from the sea anemone Anemonia sulcata was converted into a dimeric and monomeric protein by site-directed mutagenesis. The protein was engineered without prior knowledge of its crystal structure based on a sequence alignment of multiple proteins belonging to the GFP-family. Crucial residues for(More)
Guanylate cyclase (GC) catalyzes the biosynthesis of cyclic guanosine 3',5'- monophosphate (cGMP) from GTP. GC exists in two isoenzyme forms: soluble and membrane-bound. The soluble GC (sGC) is a heterodimer composed of an alpha and a beta subunit, and it contains heme as a prosthetic group. The most important physiological activator of sGC is nitric oxide,(More)
The lack of miniaturized and cost-effective methods to control cellular excitability with dosable and temporally precise electrical perturbations represents a long-lasting and unsolved bottleneck for ion channel drug discovery pipelines. Here we developed a high-throughput-compatible fluorescent-based cellular assay that combines optogenetics and co-culture(More)
  • 1