Learn More
BACKGROUND Radiofrequency exposure from mobile phones is concentrated to the tissue closest to the handset, which includes the auditory nerve. If this type of exposure increases tumor risk, acoustic neuroma would be a potential concern. METHODS In this population-based case-control study we identified all cases age 20 to 69 years diagnosed with acoustic(More)
The very rapid worldwide increase in mobile phone use in the last decade has generated considerable interest in the possible health effects of exposure to radio frequency (RF) fields. A multinational case-control study, INTERPHONE, was set-up to investigate whether mobile phone use increases the risk of cancer and, more specifically, whether the RF fields(More)
To identify risk variants for glioma, we conducted a meta-analysis of two genome-wide association studies by genotyping 550K tagging SNPs in a total of 1,878 cases and 3,670 controls, with validation in three additional independent series totaling 2,545 cases and 2,953 controls. We identified five risk loci for glioma at 5p15.33 (rs2736100, TERT; P = 1.50 x(More)
Handheld mobile phones were introduced in Sweden during the late 1980s. The purpose of this population-based, case-control study was to test the hypothesis that long-term mobile phone use increases the risk of brain tumors. The authors identified all cases aged 20-69 years who were diagnosed with glioma or meningioma during 2000-2002 in certain parts of(More)
There is public concern that use of mobile phones could increase the risk of brain tumours. If such an effect exists, acoustic neuroma would be of particular concern because of the proximity of the acoustic nerve to the handset. We conducted, to a shared protocol, six population-based case – control studies in four Nordic countries and the UK to assess the(More)
BACKGROUND Use of mobile telephones has been suggested as a possible risk factor for intracranial tumours. To evaluate the effect of mobile phones on risk of meningioma, we carried out an international, collaborative case-control study of 1209 meningioma cases and 3299 population-based controls. METHODS Population-based cases were identified, mostly from(More)
Handheld mobile phones were introduced in Denmark and Sweden during the late 1980s. This makes the Danish and Swedish populations suitable for a study aimed at testing the hypothesis that long-term mobile phone use increases the risk of parotid gland tumors. In this population-based case-control study, the authors identified all cases aged 20-69 years(More)
The etiology of glioma is barely known. Epidemiologic studies have provided evidence for an inverse relation between glioma risk and allergic disease. Genome-wide association data have identified common genetic variants at 5p15.33 (rs2736100, TERT), 8q24.21 (rs4295627, CCDC26), 9p21.3 (rs4977756, CDKN2A-CDKN2B), 11q23.3 (rs498872, PHLDB1), and 20q13.33(More)
The ADH3 gene encodes alcohol dehydrogenase 3 (ADH3)/glutathione-dependent formaldehyde dehydrogenase, the ancestral and most conserved form of alcohol dehydrogenase. ADH3 is expressed in all tissues examined and the enzyme is essential for formaldehyde scavenging. We have screened the promoter region including exon 1 and exons 5, 6 and 7 of the ADH3 gene(More)
BACKGROUND P53 and ATM are central checkpoint genes involved in the repair of DNA damage after ionising irradiation, which has been associated with risk of brain tumours. Therefore, we tested the hypothesis that polymorphisms and haplotypes in p53 and ATM could be associated with glioma and meningioma risk. MATERIAL AND METHODS Six hundred and eighty(More)