Learn More
The newest version of MUMmer easily handles comparisons of large eukaryotic genomes at varying evolutionary distances, as demonstrated by applications to multiple genomes. Two new graphical viewing tools provide alternative ways to analyze genome alignments. The new system is the first version of MUMmer to be released as open-source software. This allows(More)
The suffix tree is one of the most important data structures in string processing and comparative genomics. However, the space consumption of the suffix tree is a bottleneck in large scale applications such as genome analysis. In this article, we will overcome this obstacle. We will show how every algorithm that uses a suffix tree as data structure can(More)
The repetitive structure of genomic DNA holds many secrets to be discovered. A systematic study of repetitive DNA on a genomic or inter-genomic scale requires extensive algorithmic support. The REPuter program described herein was designed to serve as a fundamental tool in such studies. Efficient and complete detection of various types of repeats is(More)
We show that suffix trees store various kinds of redundant information. We exploit these redundancies to obtain more space efficient representations. The most space efficient of our representations requires 20 bytes per input character in the worst case, and 10.1 bytes per input character on average for a collection of 42 files of different type. This is an(More)
We present a systematic treatment of alignment distance and local similarity algorithms on trees and forests. We build upon the tree alignment algorithm for ordered trees given by Jiang et. al (1995) and extend it to calculate local forest alignments, which is essential for finding local similar regions in RNA secondary structures. The time complexity of(More)
We present an efficient implementation of a write-only topdown construction for suffix trees. Our implementation is based on a new, space-efficient representation of suffix trees which requires only 12 bytes per input character in the worst case, and 8.5 bytes per input character on average for a collection of files of different type. We show how to(More)
We review the linear-time suffix tree constructions by Weiner, McCreight, and Ukkonen. We use the terminology of the most recent algorithm, Ukkonen's on-line construction, to explain its historic predecessors. This reveals relationships much closer than one would expect, since the three algorithms are based on rather different intuitive ideas. Moreover, it(More)
Transposable elements are abundant in eukaryotic genomes and it is believed that they have a significant impact on the evolution of gene and chromosome structure. While there are several completed eukaryotic genome projects, there are only few high quality genome wide annotations of transposable elements. Therefore, there is a considerable demand for(More)
The challenges of accurate gene prediction and enumeration are further aggravated in large genomes that contain highly repetitive transposable elements (TEs). Yet TEs play a substantial role in genome evolution and are themselves an important subject of study. Repeat annotation, based on counting occurrences of k-mers, has been previously used to(More)