Stefan Kotowski

Learn More
The simple genetic algorithm (SGA) and its convergence analysis are main subjects of the article. A particular SGA is defined on a finite multi-set of individuals (chromosomes) together with mutation and proportional selection operators, each of which with some prescribed probability. The selection operation acts on the basis of the fitness function defined(More)
Some tools to measure convergence properties of genetic algorithms are introduced. A classification procedure is proposed for genetic algorithms based on a conjecture: the entropy and the fractal dimension of trajectories produced by them are quantities that characterize the classes of the algorithms. The role of these quantities as invariants of the(More)
  • 1