Learn More
BACKGROUND Isolated 3-methylcrotonyl-CoA carboxylase (MCC) deficiency is an autosomal recessive disorder of leucine metabolism caused by mutations in MCCC1 or MCCC2 encoding the α and β subunit of MCC, respectively. The phenotype is highly variable ranging from acute neonatal onset with fatal outcome to asymptomatic adults. METHODS We report clinical,(More)
Glutaryl-CoA dehydrogenase (GCDH) deficiency is an autosomal recessive disease with an estimated overall prevalence of 1 in 100 000 newborns. Biochemically, the disease is characterized by accumulation of glutaric acid, 3-hydroxyglutaric acid, glutaconic acid, and glutarylcarnitine, which can be detected by gas chromatography-mass spectrometry of organic(More)
Glutaric acidemia type 1 (GA-1) is an autosomal recessive disorder characterized by a deficiency of glutaryl-CoA dehydrogenase (GCDH) activity. GA-1 is often associated with an acute encephalopathy between 6 and 18 months of age that causes striatal damage resulting in a severe dystonic movement disorder. Ten autopsy cases have been previously described.(More)
Vici syndrome is a recessively inherited multisystem disorder characterized by callosal agenesis, cataracts, cardiomyopathy, combined immunodeficiency and hypopigmentation. To investigate the molecular basis of Vici syndrome, we carried out exome and Sanger sequence analysis in a cohort of 18 affected individuals. We identified recessive mutations in EPG5(More)
A key question for urea cycle disorders is their incidence. In the United States two UCDs, argininosuccinic synthetase and lyase deficiency, are currently detected by newborn screening. We used newborn screening data on over 6million births and data from the large US and European longitudinal registries to determine how common these conditions are. The(More)
Glutaryl-CoA dehydrogenase (GCDH) deficiency is a rare inborn disorder of L-lysine, L-hydroxylysine, and L-tryptophan metabolism complicated by striatal damage during acute encephalopathic crises. Three decades after its description, the natural history and how to treat this disorder are still incompletely understood. To study which variables influenced the(More)
In the last decades the survival of patients with methylmalonic aciduria has been improved. However, the overall outcome of affected patients remains disappointing. The disease course is often complicated by acute life-threatening metabolic crises, which can result in multiple organ failure or even death, resembling primary defects of mitochondrial energy(More)
Acute encephalopathic crisis in glutaryl-CoA dehydrogenase deficiency results in an unfavourable disease course and poor outcome, dominated by dystonia, feeding problems, seizures and secondary complications, and quite often leading to early death. The prerequisite for the prevention of irreversible brain damage in this disease is the detection of affected(More)
Mitochondria supply cells with ATP, heme, and iron sulfur clusters (ISC), and mitochondrial energy metabolism involves both heme- and ISC-dependent enzymes. Here, we show that mitochondrial iron supply and function require iron regulatory proteins (IRP), cytosolic RNA-binding proteins that control mRNA translation and stability. Mice lacking both IRP1 and(More)
Glutaric acid (GA) and 3-hydroxyglutaric acids (3-OH-GA) are key metabolites in glutaryl co-enzyme A dehydrogenase (GCDH) deficiency and are both considered to be potential neurotoxins. As cerebral concentrations of GA and 3-OH-GA have not yet been studied systematically, we investigated the tissue-specific distribution of these organic acids and(More)