Stefan K. Muller

Learn More
Attachment of SUMO to proteins regulates protein-protein interactions through noncovalent binding of the SUMO moiety to specialized SUMO interaction motifs (SIMs). A core of hydrophobic amino acids has been described as the major determinant of SIM function. Using the transcriptional coregulator and SUMO ligase PIAS1 as a model, we define an extended(More)
The ubiquitin-like SUMO system controls cellular key functions, and several lines of evidence point to a critical role of SUMO for mitotic progression. However, in mammalian cells mitotic substrates of sumoylation and the regulatory components involved are not well defined. Here, we identify Borealin, a component of the chromosomal passenger complex (CPC),(More)
Ribosome biogenesis is a tightly controlled pathway that requires an intricate spatial and temporal interplay of protein networks. Most structural rRNA components are generated in the nucleolus and assembled into pre-ribosomal particles, which are transferred for further maturation to the nucleoplasm and cytoplasm. In metazoa, few regulatory components for(More)
The attachment of the SUMO modifier to proteins controls cellular signaling pathways through noncovalent binding to SUMO-interaction motifs (SIMs). Canonical SIMs contain a core of hydrophobic residues that bind to a hydrophobic pocket on SUMO. Negatively charged residues of SIMs frequently contribute to binding by interacting with a basic surface on SUMO.(More)
The ubiquitin-like SUMO system regulates gene expression, but the molecular insights into this process are incomplete. We show that the SUMO-specific isopeptidase SENP3 controls H3K4 methylation by regulating histone-modifying SET1/MLL complexes. SET1/MLL complexes are composed of a histone methyltransferase and the regulatory components WDR5, RbBP5, Ash2L,(More)
The ubiquitin-like SUMO system functions by a cyclic process of modification and demodification, and recent data suggest that the nucleolus is a site of sumoylation-desumoylation cycles. For example, the tumour suppressor ARF stimulates sumoylation of nucleolar proteins. Here, we show that the nucleolar SUMO-specific protease SENP3 is associated with(More)
The inducible transcriptional complex AP-1, composed of c-Fos and c-Jun proteins, is crucial for cell adaptation to many environmental changes. While its mechanisms of activation have been extensively studied, how its activity is restrained is poorly understood. We report here that lysine 265 of c-Fos is conjugated by the peptidic posttranslational(More)
p53 and its cousins p63 and p73 are critical regulators of the genotoxic stress response in mammalian cells. Their activity is controlled by an intricate network of post-translational modifications. The ubiquitin-like SUMO system targets all three family members and modulates their transcriptional activity, stability or subcellular trafficking. While the(More)
A highly specific antiserum was prepared against purified cauliflower mosaic virus viroplasm-protein (VmP). A virus specific in vitro major translation product (TPmaj), encoded by the 19S poly(A) RNA fraction from cauliflower mosaic virus infected turnip leaves, was recognized by this antiserum. The N-terminal sequence of TPmaj corresponds to the sequence(More)
The ability of adenovirus to induce cell transformation depends on the E1A and E1B-55K oncoproteins. While E1A functionally inactivates the retinoblastoma tumour suppressor, E1B-55K primarily interferes with the function of p53. In adenovirus transformed cells E1B-55K can directly affect p53-dependent transactivation. In virus-infected cells E1B-55K(More)