Stefan Jellbauer

Learn More
Neutrophils are innate immune cells that counter pathogens by many mechanisms, including release of antimicrobial proteins such as calprotectin to inhibit bacterial growth. Calprotectin sequesters essential micronutrient metals such as zinc, thereby limiting their availability to microbes, a process termed nutritional immunity. We find that while(More)
BACKGROUND Chronic kidney disease (CKD) causes intestinal barrier dysfunction which by allowing influx of endotoxin and other noxious products contributes to the CKD-associated systemic inflammation and uremic toxicity. We have recently shown that intestinal barrier dysfunction in CKD animals is due to degradation of transcellular (claudin-1 and occludin)(More)
The Salmonella type III secretion system (T3SS) efficiently translocates heterologous proteins into the cytosol of eukaryotic cells. This leads to an antigen-specific CD8 T-cell induction in mice orally immunized with recombinant Salmonella. Recently, we have used Salmonella's T3SS as a prophylactic and therapeutic intervention against a murine(More)
We have developed a new vaccination strategy by using the Salmonella type III secretion system (T3SS) to translocate heterologous antigens into the cytosol of host cells. This leads to an efficient antigen-specific CD8 T cell induction. Recently, we have demonstrated the use of Salmonella’s T3SS for the immunoprophylaxis of a solid tumor. The murine(More)
Inflammatory bowel diseases (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), are chronic conditions characterised by recurrent episodes of intestinal inflammation. It is widely accepted that genetic predisposition and environmental factors contribute to the onset and the development of IBD. Many host factors that influence the onset of IBD(More)
Interleukin-22 (IL-22) is highly induced in response to infections with a variety of pathogens, and its main functions are considered to be tissue repair and host defense at mucosal surfaces. Here we showed that IL-22 has a unique role during infection in that its expression suppressed the intestinal microbiota and enhanced the colonization of a pathogen.(More)
The mammalian target of rapamycin (mTOR) is a kinase that functions in two distinct complexes, mTORC1 and mTORC2. In peripheral B cells, complete deletion of mTOR suppresses germinal center B-cell responses, including class switching and somatic hypermutation. The allosteric mTORC1 inhibitor rapamycin blocks proliferation and differentiation, but lower(More)
Transition metal ions are essential micronutrients for all living organisms. In mammals, these ions are often protein-bound and sequestered within cells, limiting their availability to microbes. Moreover, in response to infection, mammalian hosts further reduce the availability of metal nutrients by activating epithelial cells and recruiting neutrophils,(More)
Extracellular Yersinia pseudotuberculosis employs a type III secretion system (T3SS) for translocating virulence factors (Yersinia outer proteins [Yops]) directly into the cytosol of eukaryotic cells. Recently, we used YopE as a carrier molecule for T3SS-dependent secretion and translocation of listeriolysin O (LLO) from Listeria monocytogenes. We(More)
Preexisting antivector immunity can severely compromise the ability of Salmonella enterica serovar Typhimurium live vaccines to induce protective CD8 T-cell frequencies after type III secretion system-mediated heterologous protein translocation in orally immunized mice. To circumvent this problem, we injected CpG DNA admixed to the immunodominant(More)