Learn More
Inhibition of voltage-dependent calcium channels by omega-conotoxin MVIIC (omega-CTx-MVIIC) was studied in various types of rat neurons. When studied with 5 mM Ba2+ as charge carrier, omega-CTx-MVIIC block of N-type calcium channels in sympathetic neurons was potent, with half-block at 18 nM. Block of N-type channels had a rapid onset (tau approximately 1(More)
The CaV2.2 gene encodes the functional core of the N-type calcium channel. This gene has the potential to generate thousands of CaV2.2 splice isoforms with different properties. However, the functional significance of most sites of alternative splicing is not established. The IVS3-IVS4 region contains an alternative splice site that is conserved(More)
The antihypertensive agent mibefradil completely and reversibly inhibited T-type calcium channels in freshly isolated rat cerebellar Purkinje neurons. The potency of mibefradil was increased at less hyperpolarized holding potentials, and the apparent affinity was correlated with the degree of channel inactivation. At 35 degrees, the apparent dissociation(More)
A number of peptide toxins from venoms of spiders and cone snails are high affinity ligands for voltage-gated calcium channels and are useful tools for studying calcium channel function and structure. Using whole-cell recordings from rat sympathetic ganglion and cerebellar Purkinje neurons, we studied toxins that target neuronal N-type (Ca(V)2.2) and P-type(More)
The cystic fibrosis transmembrane conductance regulator (CFTR) is both a member of the ATP-binding cassette superfamily and a Cl(-)-selective ion channel. We investigated the permeation pathway of human CFTR with measurements on conduction and open-channel blockade by diphenylamine-2-carboxylic acid (DPC). We used site-directed mutagenesis and oocyte(More)
We studied the mechanism of inhibition of P-type calcium channels in rat cerebellar Purkinje neurons by the peptide toxin omega-Aga-IVA. Saturating concentrations of omega-Aga-IVA (> 50 nM) inhibited inward current carried by 2-5 mM Ba almost completely. However, outward current at depolarizations of > +60 mV, carried by internal Cs, was inhibited much(More)
We studied the mechanism by which the peptide omega-grammotoxin-SIA inhibits voltage-dependent calcium channels. Grammotoxin at concentrations of > 50 nM completely inhibited inward current carried by 2 mM barium through P-type channels in rat cerebellar Purkinje neurons when current was elicited by depolarizations up to +40 mV. However, outward current(More)
Neuronal voltage-dependent Ca2+ channels are heteromultimers of alpha1, beta, and alpha2delta subunits, and any one of five alpha1 subunits (alpha1A-E) may associate with one of four beta subunits (beta1-4). The specific alpha1-beta combination assembled determines single-channel properties, while variation in the proportion of each combination contributes(More)
In many neurons, Ca(2+) signaling depends on efflux of Ca(2+) from intracellular stores into the cytoplasm via caffeine-sensitive ryanodine receptors (RyRs) of the endoplasmic reticulum. We have used high-speed confocal microscopy to image depolarization- and caffeine-evoked increases in cytoplasmic Ca(2+) levels in individual cultured frog sympathetic(More)
Nicotinic acetylcholine receptors (nAChRs) are longstanding targets for a next generation of pain therapeutics, but the nAChR subtypes that govern analgesia remain unknown. We tested a series of nicotinic agonists, including many molecules used or tried clinically, on a panel of cloned neuronal nAChRs for potency and selectivity using patch-clamp(More)