Learn More
This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically(More)
Only little is known about how cells coordinately behave to establish functional tissue structure and restore microarchitecture during regeneration. Research in this field is hampered by a lack of techniques that allow quantification of tissue architecture and its development. To bridge this gap, we have established a procedure based on confocal laser(More)
UNLABELLED The impairment of hepatic metabolism due to liver injury has high systemic relevance. However, it is difficult to calculate the impairment of metabolic capacity from a specific pattern of liver damage with conventional techniques. We established an integrated metabolic spatial-temporal model (IM) using hepatic ammonia detoxification as a(More)
Signaling through the Wnt/β-catenin pathway is a crucial determinant of hepatic zonal gene expression, liver development, regeneration, and tumorigenesis. Transgenic mice with hepatocyte-specific knockout of Ctnnb1 (encoding β-catenin) have proven their usefulness in elucidating these processes. We now found that a small number of hepatocytes escape the(More)
To what extent the growth dynamics of tumors is controlled by nutrients, biomechanical forces and other factors at different stages and in different environments is still largely unknown. Here we present a biophysical model to study the spatio-temporal growth dynamics of two-dimensional tumor monolayers and three-dimensional tumor spheroids as a(More)
Liver regeneration is a complex process, having evolved to protect animals from the consequences of liver loss caused by food toxins. In this study, we established a mathematical spatial-temporal model of the liver lobule regenerating after CCl(4) intoxication. The aim of modelling the regeneration process by matching experimental observations with those(More)
Histological alterations often constitute a fingerprint of toxicity and diseases. The extent to which these alterations are cause or consequence of compromised organ function, and the underlying mechanisms involved is a matter of intensive research. In particular, liver disease is often associated with altered tissue microarchitecture, which in turn may(More)
BACKGROUND & AIMS Recently, spatial-temporal/metabolic mathematical models have been established that allow the simulation of metabolic processes in tissues. We applied these models to decipher ammonia detoxification mechanisms in the liver. METHODS An integrated metabolic-spatial-temporal model was used to generate hypotheses of ammonia metabolism.(More)
UNLABELLED CellSys is a modular software tool for efficient off-lattice simulation of growth and organization processes in multi-cellular systems in 2D and 3D. It implements an agent-based model that approximates cells as isotropic, elastic and adhesive objects. Cell migration is modeled by an equation of motion for each cell. The software includes many(More)
From the more than 100 liver diseases described, many of those with high incidence rates manifest themselves by histopathological changes, such as hepatitis, alcoholic liver disease, fatty liver disease, fibrosis, and, in its later stages, cirrhosis, hepatocellular carcinoma, primary biliary cirrhosis and other disorders. Studies of disease pathogeneses are(More)