Learn More
This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically(More)
UNLABELLED CellSys is a modular software tool for efficient off-lattice simulation of growth and organization processes in multi-cellular systems in 2D and 3D. It implements an agent-based model that approximates cells as isotropic, elastic and adhesive objects. Cell migration is modeled by an equation of motion for each cell. The software includes many(More)
Histological alterations often constitute a fingerprint of toxicity and diseases. The extent to which these alterations are cause or consequence of compromised organ function, and the underlying mechanisms involved is a matter of intensive research. In particular, liver disease is often associated with altered tissue microarchitecture, which in turn may(More)
In this paper, we explore how potential biomechanical influences on cell cycle entrance and cell migration affect the growth dynamics of cell populations. We consider cell populations growing in free, granular and tissue-like environments using a mathematical single-cell-based model. In a free environment we study the effect of pushing movements triggered(More)
MOTIVATION TiQuant is a modular software tool for efficient quantification of biological tissues based on volume data obtained by biomedical image modalities. It includes a number of versatile image and volume processing chains tailored to the analysis of different tissue types which have been experimentally verified. TiQuant implements a novel method for(More)
clarifying the underlying principles. The mathematical models formalize the relationship between individual components , test their interactions in a virtual setting and may even simulate influences that are (still) difficult to analyse experimentally. In recent years, model simulations have been instrumental to elucidate mechanisms and principles that were(More)
The prognosis of cancer patients suffering from solid tumors significantly depends on the developmental stage of the tumor. For cervix carcinoma the prognosis is better for compact shapes than for diffusive shapes since the latter may already indicate invasion, the stage in tumor progression that precedes the formation of metastases. In this paper, we(More)
Liver regeneration is a complex process, having evolved to protect animals from the consequences of liver loss caused by food toxins. We establish a computational 3D single-cell-based model of the liver lobule regenerating after intoxication by CCl 4. In order to constitute a statistically representative liver lobule, we assemble information from light and(More)
In the presented thesis we elaborated a general agent based model for multicellular populations. We used this model to shed light on the processes that determine the growth of avascular tumor spheroids and studied the key mechanisms of liver regeneration. In order to make such analyses possible, we developed a comprehensive software tool that allowed us to(More)
  • 1