Learn More
PURPOSE Progressive loss of skeletal muscle mass with aging (sarcopenia) forms a global health concern. It has been suggested that an impaired capacity to increase muscle protein synthesis rates in response to protein intake is a key contributor to sarcopenia. We assessed whether differences in post-absorptive and/or post-prandial muscle protein synthesis(More)
Preservation of skeletal muscle mass is of great importance for maintaining both metabolic health and functional capacity. Muscle mass maintenance is regulated by the balance between muscle protein breakdown and synthesis rates. Both muscle protein breakdown and synthesis rates have been shown to be highly responsive to physical activity and food intake.(More)
The respiratory epithelium plays a critical role in innate defenses against airborne pathogens and pollutants, and alterations in epithelial homeostasis and repair mechanisms are thought to contribute to chronic lung diseases associated with airway remodeling. Previous studies implicated the nicotinamide adenine dinucleotide phosphate-reduced oxidase dual(More)
Aging has been associated with a reduced muscle protein synthetic response to protein intake, termed "anabolic resistance." Physical activity performed before protein intake increases the use of protein-derived amino acids for postprandial muscle protein accretion in senescent muscle. Thus, the level of habitual physical activity may be fundamental to(More)
Loss of diaphragm muscle strength in inflammatory lung disease contributes to mortality and is associated with diaphragm fiber atrophy. Ubiquitin (Ub) 26S-proteasome system (UPS)-dependent protein breakdown, which mediates muscle atrophy in a number of physiological and pathological conditions, is elevated in diaphragm muscle of patients with chronic(More)
BACKGROUND Dietary protein digestion and absorption is an important factor modulating muscle protein accretion. However, there are few data available on the effects of coingesting other macronutrients with protein on digestion and absorption kinetics and the subsequent muscle protein synthetic response. OBJECTIVE The objective of the study was to(More)
BACKGROUND Muscle mass maintenance is largely regulated by basal muscle protein synthesis rates and the ability to increase muscle protein synthesis after protein ingestion. To our knowledge, no previous studies have evaluated the impact of habituation to either low protein intake (LOW PRO) or high protein intake (HIGH PRO) on the postprandial muscle(More)
BACKGROUND Protein consumed after resistance exercise increases postexercise muscle protein synthesis rates. To date, dairy protein has been studied extensively, with little known about the capacity of other protein-dense foods to augment postexercise muscle protein synthesis rates. OBJECTIVE We aimed to compare protein digestion and absorption kinetics,(More)
We aimed to determine the impact of precursor pool dilution on the assessment of postprandial myofibrillar protein synthesis rates (MPS). A Holstein dairy cow was infused with large amounts of L-[1-(13)C]phenylalanine and L-[1-(13)C]leucine, and the milk was collected and fractionated. The enrichment levels in the casein were 38.7 and 9.3 mole percent(More)
CONTEXT The progressive loss of muscle mass with aging is accelerated in type 2 diabetes patients. It has been suggested that this is attributed to a blunted muscle protein synthetic response to food intake. OBJECTIVE The objective of the study was to test the hypothesis that the muscle protein synthetic response to protein ingestion is impaired in older(More)