Stefan Heller

Learn More
The detection of osmotic stimuli is essential for all organisms, yet few osmoreceptive proteins are known, none of them in vertebrates. By employing a candidate-gene approach based on genes encoding members of the TRP superfamily of ion channels, we cloned cDNAs encoding the vanilloid receptor-related osmotically activated channel (VR-OAC) from the rat,(More)
In mammals, the permanence of acquired hearing loss is mostly due to the incapacity of the cochlea to replace lost mechanoreceptor cells, or hair cells. In contrast, damaged vestibular organs can generate new hair cells, albeit in limited numbers. Here we show that the adult utricular sensory epithelium contains cells that display the characteristic(More)
The adult mammalian cochlea lacks regenerative capacity, which is the main reason for the permanence of hearing loss. Vestibular organs, in contrast, replace a small number of lost hair cells. The reason for this difference is unknown. In this work we show isolation of sphere-forming stem cells from the early postnatal organ of Corti, vestibular sensory(More)
The TRP superfamily includes a diversity of non-voltagegated cation channels that vary significantly in their selectivity and mode of activation. Nevertheless, members of the TRP superfamily share significant sequence homology and predicted structural similarities. Currently, most of the genes and proteins that comprise the TRP superfamily have multiple(More)
Mechanosensitive sensory hair cells are the linchpin of our senses of hearing and balance. The inability of the mammalian inner ear to regenerate lost hair cells is the major reason for the permanence of hearing loss and certain balance disorders. Here, we present a stepwise guidance protocol starting with mouse embryonic stem and induced pluripotent stem(More)
The increase in life expectancy is accompanied by the growing burden of chronic diseases. Hearing loss is perhaps the most prevalent of all chronic diseases. In addition to age-related hearing loss, a substantial number of cases of audiological impairment are either congenital in nature or acquired during childhood. The permanence of hearing loss is mainly(More)
Ca2+ signaling serves distinct purposes in different parts of a hair cell. The Ca2+ concentration in stereocilia regulates adaptation and, through rapid transduction-channel reclosure, underlies amplification of mechanical signals. In presynaptic active zones, Ca2+ mediates the exocytotic release of afferent neurotransmitter. At efferent synapses, Ca2+(More)
In some cochleae, the number and kinetic properties of Ca2+-activated K+ (KCa) channels partly determine the characteristic frequency of each hair cell and thus help establish a tonotopic map. In the chicken's basilar papilla, we found numerous isoforms of KCa channels generated by alternative mRNA splicing at seven sites in a single gene, cSlo. In situ(More)
Gain/loss of function studies were utilized to assess the potential role of the endogenous vanilloid receptor TRPV4 as a sensor of flow and osmolality in M-1 collecting duct cells (CCD). TRPV4 mRNA and protein were detectable in M-1 cells and stably transfected HEK-293 cells, where the protein occurred as a glycosylated doublet on Western blots.(More)
Hearing loss in mammals is irreversible because cochlear neurons and hair cells do not regenerate. To determine whether we could replace neurons lost to primary neuronal degeneration, we injected EYFP-expressing embryonic stem cell-derived mouse neural progenitor cells into the cochlear nerve trunk in immunosuppressed animals 1 week after destroying the(More)