Stefan Feisthauer

Learn More
Sulfidic benzene-contaminated groundwater was used to fuel a two-chambered microbial fuel cell (MFC) over a period of 770 days. We aimed to understand benzene and sulfide removal processes in the anoxic anode chamber and describe the microbial community enriched over the operational time. Operated in batch feeding-like circular mode, supply of fresh(More)
We applied the dual isotope system (delta(34)S-delta(18)O--SO4(2-)) to investigate the relevance of bacterial sulfate reduction (BSR) for natural biodegradation in an anaerobic, sulfate rich aquifer contaminated with petroleum hydrocarbons. Isotope fractionation parameters were determined in column experiments operated under near in situ conditions at the(More)
The impact of four electron acceptors on hydrocarbon-induced methanogenesis was studied. Methanogenesis from residual hydrocarbons may enhance the exploitation of oil reservoirs and may improve bioremediation. The conditions to drive the rate-limiting first hydrocarbon-oxidizing steps for the conversion of hydrocarbons into methanogenic substrates are(More)
Motivated by the finding that Pseudomonas knackmussii B13 but not Rhodococcus opacus 1CP grows in the absence of externally provided CO(2), we investigated the assimilation of (13)CO(2) into active cells cultivated with non-labelled glucose as sole energy substrate. (13)C found in the bulk biomass indicated a substantial but different CO(2) assimilation by(More)
Decisions to employ monitored natural attenuation (MNA) as a remediation strategy at contaminated field sites require a comprehensive characterization of the site-specific biodegradation processes. In the present study, compound-specific carbon and hydrogen isotope analysis (CSIA) was used to investigate intrinsic biodegradation of benzene and ethylbenzene(More)
  • 1