Stefan Faelt

Learn More
Cavity quantum electrodynamics (QED) studies the interaction between a quantum emitter and a single radiation-field mode. When an atom is strongly coupled to a cavity mode, it is possible to realize important quantum information processing tasks, such as controlled coherent coupling and entanglement of distinguishable quantum systems. Realizing these tasks(More)
Reliable preparation, manipulation and measurement protocols are necessary to exploit a physical system as a quantum bit. Spins in optically active quantum dots offer one potential realization and recent demonstrations have shown high-fidelity preparation and ultrafast coherent manipulation. The final challenge-that is, single-shot measurement of the(More)
Conditional quantum dynamics, where the quantum state of one system controls the outcome of measurements on another quantum system, is at the heart of quantum information processing. We demonstrate conditional dynamics for two coupled quantum dots, whereby the probability that one quantum dot makes a transition to an optically excited state is controlled by(More)
The interaction between a single confined spin and the spins of an electron reservoir leads to one of the most remarkable phenomena of many-body physics--the Kondo effect. Electronic transport measurements on single artificial atoms, or quantum dots, have made it possible to study the effect in great detail. Here we report optical measurements on a single(More)
We have investigated few-body states in vertically stacked quantum dots. Because of a small interdot tunneling rate, the coupling in our system is in a previously unexplored regime where electron-hole exchange plays a prominent role. By tuning the gate bias, we are able to turn this coupling off and study a complementary regime where total electron spin is(More)
We propose and demonstrate an all-optical approach to single-electron sensing using the optical transitions of a semiconductor quantum dot. The measured electric-field sensitivity of 5 (V/m)/√Hz corresponds to detecting a single electron located 5 μm from the quantum dot-nearly 10 times greater than the diffraction limited spot size of the excitation(More)
Tandem InP nanowire pn-junctions have been grown on a Si substrate using metal-organic vapor phase epitaxy. In situ HCl etching allowed the different subcomponents to be stacked on top of each other in the axial extension of the nanowires without detrimental radial growth. Electro-optical measurements on a single nanowire tandem pn-junction device show an(More)
We report the observation of dressed states of a quantum dot. The optically excited exciton and biexciton states of the quantum dot are coupled by a strong laser field and the resulting spectral signatures are measured using differential transmission of a probe field. We demonstrate that the anisotropic electron-hole exchange interaction induced splitting(More)
Light-matter interaction has played a central role in understanding as well as engineering new states of matter. Reversible coupling of excitons and photons enabled groundbreaking results in condensation and superfluidity of nonequilibrium quasiparticles with a photonic component. We investigated such cavity-polaritons in the presence of a high-mobility(More)
The efficient conversion of thermal energy to mechanical work by a heat engine is an ongoing technological challenge. Since the pioneering work of Carnot, it has been known that the efficiency of heat engines is bounded by a fundamental upper limit—the Carnot limit. Theoretical studies suggest that heat engines may be operated beyond the Carnot limit by(More)