Learn More
We present various new concepts and results related to abstract dialectical frameworks (ADFs), a powerful generalization of Dung's argumentation frameworks (AFs). In particular, we show how the existing definitions of stable and preferred semantics which are restricted to the subcase of so-called bi-polar ADFs can be improved and generalized to arbitrary(More)
We show in this paper how managed multi-context systems (mMCSs) can be turned into a reactive formalism suitable for continuous reasoning in dynamic environments. We extend mMCSs with (abstract) sensors and define the notion of a run of the extended systems. We then show how typical problems arising in online reasoning can be addressed: handling potentially(More)
In the field of artificial intelligence (AI), the subdomain of knowledge representation (KR) has the aim to represent, integrate, and exchange knowledge in order to do some reasoning about the given information. During the last decades many different KR-languages were proposed for a variety of certain applications with specific needs. The concept of a(More)
dialectical frameworks (ADFs) are a powerful gener-alisation of Dung's abstract argumentation frameworks. In this paper we present an answer set programming based software system, called DIAMOND (DIAlectical MOdels eNcoDing). It translates ADFs into answer set programs whose stable models correspond to models of the ADF with respect to several semantics(More)
In this work, we present asynchronous multi-context systems (aMCSs), which provide a framework for loosely coupling different knowledge representation formalisms that allows for online reasoning in a dynamic environment. Systems of this kind may interact with the outside world via input and output streams and may therefore react to a continuous flow of(More)
A widespread modeling language for abstract argumentation is the argumentation framework due to Dung [1]. However relating arguments in this framework is solely based on the notion of direct binary attacks. More sophisticated relations require auxiliary structures tailored to the chosen semantics. We present a system called ADFsys based on the more general(More)