Learn More
Synaptic vesicles fuse at active zone (AZ) membranes where Ca(2+) channels are clustered and that are typically decorated by electron-dense projections. Recently, mutants of the Drosophila melanogaster ERC/CAST family protein Bruchpilot (BRP) were shown to lack dense projections (T-bars) and to suffer from Ca(2+) channel-clustering defects. In this study,(More)
Aggregation of α-synuclein (αS) is involved in the pathogenesis of Parkinson's disease (PD) and a variety of related neurodegenerative disorders. The physiological function of αS is largely unknown. We demonstrate with in vitro vesicle fusion experiments that αS has an inhibitory function on membrane fusion. Upon increased expression in cultured cells and(More)
Synapse formation and maturation requires bidirectional communication across the synaptic cleft. The trans-synaptic Neurexin-Neuroligin complex can bridge this cleft, and severe synapse assembly deficits are found in Drosophila melanogaster neuroligin (Nlg1, dnlg1) and neurexin (Nrx-1, dnrx) mutants. We show that the presynaptic active zone protein Syd-1(More)
Presenilins are part of a protease complex that is responsible for the intramembraneous cleavage of the amyloid precursor protein involved in Alzheimer's disease and of Notch receptors. In Caenorhabditis elegans, mutations in the presenilin sel-12 result in a highly penetrant egg-laying defect. spr-5 was identified as an extragenic suppressor of the sel-12(More)
Mutations in two genes encoding the putative kinases LRRK2 and PINK1 have been associated with inherited variants of Parkinson disease. The physiological role of both proteins is not known at present, but studies in model organisms have linked their mutants to distinct aspects of mitochondrial dysfunction, increased vulnerability to oxidative and(More)
Clustering neurotransmitter receptors at the synapse is crucial for efficient neurotransmission. Here we identify a Caenorhabditis elegans locus, lev-10, required for postsynaptic aggregation of ionotropic acetylcholine receptors (AChRs). lev-10 mutants were identified on the basis of weak resistance to the anthelminthic drug levamisole, a nematode-specific(More)
Small guanosine triphosphatases of the Rab family regulate intracellular vesicular trafficking. Rab2 is highly expressed in the nervous system, yet its function in neurons is unknown. In Caenorhabditis elegans, unc-108/rab-2 mutants have been isolated based on their locomotory defects. We show that the locomotion defects of rab-2 mutants are not caused by(More)
Nicotinic acetylcholine receptors (AChRs) are pentameric ligand-gated ion channels that mediate fast synaptic transmission at the neuromuscular junction (NMJ). After assembly in the endoplasmic reticulum (ER), AChRs must be transported to the plasma membrane through the secretory apparatus. Little is known about specific molecules that mediate this(More)
Despite a key role for dense core vesicles (DCVs) in neuronal function, there are major gaps in our understanding of DCV biogenesis. A genetic screen for Caenorhabditis elegans mutants with behavioral defects consistent with impaired DCV function yielded five mutations in UNC-108 (Rab2). A genetic analysis showed that unc-108 mutations impair a DCV function(More)
Frits Kamp*, Nicole Exner, Anne Kathrin Lutz, Nora Wender, Jan Hegermann, Bettina Brunner, Brigitte Nuscher, Tim Bartels, Armin Giese, Klaus Beyer, Stefan Eimer, Konstanze F Winklhofer and Christian Haass* DZNE-German Center for Neurodegenerative Diseases, Munich, Germany, Adolf-Butenandt-Institute, Biochemistry, LudwigMaximilians-University, Munich,(More)