Stefan Bleeck

Learn More
The relative pitch of harmonic complex sounds, such as instrumental sounds, may be perceived by decoding either the fundamental pitch (f0) or the spectral pitch (fSP) of the stimuli. We classified a large cohort of 420 subjects including symphony orchestra musicians to be either f0 or fSP listeners, depending on the dominant perceptual mode. In a subgroup(More)
This paper describes a version of the auditory image model (AIM) [1] implemented in MATLAB. It is referred to as “aim-mat” and it includes the basic modules that enable AIM to simulate the spectral analysis, neural encoding and temporal integration performed by the auditory system. The dynamic representations produced by non-static sounds can be viewed on a(More)
Little is known about how the auditory cortex adapts to artificial input as provided by a cochlear implant (CI). We report the case of a 71-year-old profoundly deaf man, who has successfully used a unilateral CI for 4 years. Independent component analysis (ICA) of 61-channel EEG recordings could separate CI-related artifacts from auditory-evoked potentials(More)
The musical pitch of harmonic complex sounds, such as instrumental sounds, is perceived primarily by decoding either the fundamental pitch (keynote) or spectral aspects of the stimuli, for example, single harmonics. We divided 334 professional musicians, including symphony orchestra musicians, 75 amateur musicians, and 54 nonmusicians, into either(More)
The responses to two identical, consecutive pure tone stimuli with varying inter-stimulus intervals (delta ts) were measured for 89 neurons in the cochlear nucleus of the anaesthetised guinea pig. We observed two main effects; either a decrease (suppression) or an increase (facilitation) in response to the second tone followed by an exponential recovery.(More)
Auditory evoked potentials (AEPs) provide an objective measure of auditory cortical function, but AEPs from cochlear implant (CI) users are contaminated by an electrical artifact. Here, we investigated the effects of electrical artifact attenuation on AEP quality. The ability of independent component analysis (ICA) in attenuating the CI artifact while(More)
There is increasing evidence that the responses of single units in the mammalian cochlear nucleus can be altered by the presentation of contralateral stimuli, although the functional significance of this binaural responsiveness is unknown. To further our understanding of this phenomenon we recorded single-unit (n = 110) response maps from the cochlear(More)
Genetic algorithms (GAs) can be used to find maxima in large search spaces in a relatively short period of time. We have used GAs in electrophysiological experiments to find the most effective stimulus (MES) for sensory neurons in the cochlear nucleus and inferior colliculus of anaesthetised guinea pigs. The MES is the stimulus that elicits the greatest(More)
A neuron׳s response to a sound can be suppressed by the presentation of a preceding sound. It has been suggested that this suppression is a direct correlate of the psychophysical phenomenon of forward masking, however, forward suppression, as measured in the responses of the auditory nerve, was insufficient to account for behavioural performance. In(More)
In the "4-6" condition of experiment 1, normal-hearing (NH) listeners compared the pitch of a bandpass-filtered pulse train, whose inter-pulse intervals (IPIs) alternated between 4 and 6 ms, to that of isochronous pulse trains. Consistent with previous results obtained at a lower signal level, the pitch of the 4-6 stimulus corresponded to that of an(More)