Stefan A. Maier

Learn More
Since its discovery, the asymmetric Fano resonance has been a characteristic feature of interacting quantum systems. The shape of this resonance is distinctively different from that of conventional symmetric resonance curves. Recently, the Fano resonance has been found in plasmonic nanoparticles, photonic crystals, and electromagnetic metamaterials. The(More)
Finite-difference time-domain simulations show direct evidence of optical pulse propagation below the diffraction limit of light along linear arrays of spherical noble metal nanoparticles with group velocities up to 0.06c . The calculated dispersion relation and group velocities correlate remarkably well with predictions from a simple point-dipole model. A(More)
Achieving control of light-material interactions for photonic device applications at nanoscale dimensions will require structures that guide electromagnetic energy with a lateral mode confinement below the diffraction limit of light. This cannot be achieved by using conventional waveguides or photonic crystals. It has been suggested that electromagnetic(More)
Metals support surface plasmons at optical wavelengths and have the ability to localize light to subwavelength regions. The field enhancements that occur in these regions set the ultimate limitations on a wide range of nonlinear and quantum optical phenomena. We found that the dominant limiting factor is not the resistive loss of the metal, but rather the(More)
We demonstrate the use of high-resolution electron beam lithography to fabricate complex nanocavities with nanometric spatial and positional control. The plasmon modes of these nanostructures are then mapped using electron energy-loss spectroscopy in a scanning transmission electron microsope. This powerful combination of patterning and plasmon mapping(More)
We theoretically demonstrated and experimentally verified high-order radial spoof localized surface plasmon resonances supported by textured metal particles. Through an effective medium theory and exact numerical simulations, we show the emergence of these geometrically-originated electromagnetic modes at microwave frequencies. The occurrence of high-order(More)
Plasmonics provides great promise for nanophotonic applications. However, the high optical losses inherent in metal-based plasmonic systems have limited progress. Thus, it is critical to identify alternative low-loss materials. One alternative is polar dielectrics that support surface phonon polariton (SPhP) modes, where the confinement of infrared light is(More)
A metallic nanostructure consisting of a disk inside a thin ring supports superradiant and very narrow subradiant modes. Symmetry breaking in this structure enables a coupling between plasmon modes of differing multipolar order, resulting in a tunable Fano resonance. The LSPR sensitivities of the subradiant and Fano resonances are predicted to be among the(More)
We observe the appearance of Fano resonances in the optical response of plasmonic nanocavities due to the coherent coupling between their superradiant and subradiant plasmon modes. Two reduced-symmetry nanostructures probed via confocal spectroscopy, a dolmen-style slab arrangement and a ring/disk dimer, clearly exhibit the strong polarization and geometry(More)
When light interacts with a metal nanoparticle (NP), its conduction electrons can be driven by the incident electric field in collective oscillations known as localized surface plasmon resonances (LSPRs). These give rise to a drastic alteration of the incident radiation pattern and to striking effects such as the subwavelength localization of(More)