Learn More
Achieving control of light-material interactions for photonic device applications at nanoscale dimensions will require structures that guide electromagnetic energy with a lateral mode confinement below the diffraction limit of light. This cannot be achieved by using conventional waveguides or photonic crystals. It has been suggested that electromagnetic(More)
Carbon nanofibers (CNFs) are used as components of planar photonic crystals. Square and rectangular lattices and random patterns of vertically aligned CNFs were fabricated and their properties studied using ellipsometry. We show that detailed information such as symmetry directions and the band structure of these novel materials can be extracted from(More)
Finite-difference time-domain simulations show direct evidence of optical pulse propagation below the diffraction limit of light along linear arrays of spherical noble metal nanoparticles with group velocities up to 0.06c. The calculated dispersion relation and group velocities correlate remarkably well with predictions from a simple point-dipole model. A(More)
Linear arrays of very small Ag nanoparticles ͑diameter ϳ10 nm, spacing 0 – 4 nm͒ were fabricated in sodalime glass using an ion irradiation technique. Optical extinction spectroscopy of the arrays reveals a large polarization-dependent splitting of the collective plasmon extinction band. Depending on the preparation condition, a redshift of the longitudinal(More)
Metals support surface plasmons at optical wavelengths and have the ability to localize light to subwavelength regions. The field enhancements that occur in these regions set the ultimate limitations on a wide range of nonlinear and quantum optical phenomena. We found that the dominant limiting factor is not the resistive loss of the metal, but rather the(More)
Our intuitive understanding of light has its foundation in the ray approximation and is intimately connected with our vision. As far as our eyes are concerned, light behaves like a stream of particles. We look inside the wavelength and study the properties of plasmonic structures with dimensions of just a few nanometers, where at a tenth or even a hundredth(More)
Near-field interactions between closely spaced Au nanoparticles were characterized by studying the spectral position of the extinction bands corresponding to longitudinal (L) and transverse (T) plasmon-polariton modes of Au nanoparticle chains. Far-field spectroscopy and finite-difference time-domain simulations on arrays of 50 nm diameter Au spheres with(More)
Nanoplasmonics is the emerging research field that studies light-matter interactions mediated by resonant excitations of surface plasmons in metallic nanostructures. It allows the manipulation of the flow of light and its interaction with matter at the nanoscale (10(-9) m). One of the most promising characteristics of plasmonic resonances is that they occur(More)
A general three-dimensional transformation optics approach is presented that yields analytical expressions for the relevant electromagnetic magnitudes in plasmonic phenomena at singular geometries. This powerful theoretical tool reveals the broadband response and superfocusing properties of touching metal nanospheres and provides an elegant physical(More)
Far-field polarization spectroscopy on chains of Au nanoparticles reveals the existence of longitudinal ͑L͒ and transverse ͑T͒ plasmon-polariton modes. The experimental results provide support for the validity of a recently published dipole model for electromagnetic energy transfer below the diffraction limit along chains of closely spaced metal(More)