Stefan A. Haas

Learn More
The functional complexity of the human transcriptome is not yet fully elucidated. We report a high-throughput sequence of the human transcriptome from a human embryonic kidney and a B cell line. We used shotgun sequencing of transcripts to generate randomly distributed reads. Of these, 50% mapped to unique genomic locations, of which 80% corresponded to(More)
Small-cell lung cancer (SCLC) is an aggressive lung tumor subtype with poor prognosis. We sequenced 29 SCLC exomes, 2 genomes and 15 transcriptomes and found an extremely high mutation rate of 7.4±1 protein-changing mutations per million base pairs. Therefore, we conducted integrated analyses of the various data sets to identify pathogenetically relevant(More)
A crucial aim upon completion of whole genome sequences is the functional analysis of all predicted genes. We have applied a high-throughput RNA-interference (RNAi) screen of 19,470 double-stranded (ds) RNAs in cultured cells to characterize the function of nearly all (91%) predicted Drosophila genes in cell growth and viability. We found 438 dsRNAs that(More)
Common diseases are often complex because they are genetically heterogeneous, with many different genetic defects giving rise to clinically indistinguishable phenotypes. This has been amply documented for early-onset cognitive impairment, or intellectual disability, one of the most complex disorders known and a very important health care problem worldwide.(More)
PURPOSE To develop a gene expression-based classifier for neuroblastoma patients that reliably predicts courses of the disease. PATIENTS AND METHODS Two hundred fifty-one neuroblastoma specimens were analyzed using a customized oligonucleotide microarray comprising 10,163 probes for transcripts with differential expression in clinical subgroups of the(More)
Mammalian genomes are organized into megabase-scale topologically associated domains (TADs). We demonstrate that disruption of TADs can rewire long-range regulatory architecture and result in pathogenic phenotypes. We show that distinct human limb malformations are caused by deletions, inversions, or duplications altering the structure of the TAD-spanning(More)
Drosophila Polycomb group (PcG) and Trithorax group (TrxG) proteins are responsible for the maintenance of stable transcription patterns of many developmental regulators, such as the homeotic genes. We have used ChIP-on-chip to compare the distribution of several PcG/TrxG proteins, as well as histone modifications in active and repressed genes across the(More)
MOTIVATION A major challenge in regulatory genomics is the identification of associations between functional categories of genes (e.g. tissues, metabolic pathways) and their regulating transcription factors (TFs). While, for a limited number of categories, the regulating TFs are already known, still for many functional categories the responsible factors(More)
Background: The opportunistic food-borne gram-positive pathogen Listeria monocytogenes can exist as a free-living microorganism in the environment and grow in the cytoplasm of vertebrate and invertebrate cells following infection. The general stress response, controlled by the alternative sigma factor, j, has an important role for bacterial survival both in(More)
We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1(More)