Stanley P Nawoschik

Learn More
Two mouse lines transgenic with the human poliovirus receptor gene (PVR), TGM-PRG-1 and TGM-PRG-3, were characterized to determine whether transgene copy number and PVR expression levels influence susceptibility to poliovirus. The mouse lines have been bred for more than 10 generations and the transgene was stably transmitted to progeny as determined by(More)
Recent data has suggested that the 5-hydroxytryptamine (5-HT)(1A) receptor is involved in cognitive processing. A novel 5-HT(1A) receptor antagonist, 4-cyano-N-{2R-[4-(2,3-dihydrobenzo[1,4]-dioxin-5-yl)-piperazin-1-yl]-propyl}-N-pyridin-2-yl-benzamide HCl (lecozotan), which has been characterized in multiple in vitro and in vivo pharmacological assays as a(More)
Recent cloning of K+ channel beta subunits revealed that these cytoplasmic polypeptides can dramatically alter the kinetics of current inactivation and promote efficient glycosylation and surface expression of the channel-forming alpha subunits. Here, we examined the expression, distribution, and association of two of these beta subunits, Kv beta 1 and Kv(More)
Neurofibrillary tangles composed of hyperphosphorylated tau are a major hallmark of Alzheimer's Disease. This phosphorylated tau may be a root cause of the disorder and therefore understanding its regulation is important for therapeutic intervention. To model this pathology, Okadaic acid (OA) has been used in primary cultured hippocampal neurons to(More)
In this study we have functionally characterized aripiprazole (OPC-14597; 7-(4-[4-(2,3-dichlorophenyl)-1-piperazinyl]butyloxy-3,4-dihydro-2-(1H)-quinolinone), the prototype of a new generation antipsychotic drug termed dopamine-serotonin-system stabilizer, in cells expressing 5-hydroxytryptamine2 (5-HT2) receptor subtypes in comparison with olanzapine. In(More)
The coexpression of the rat Kv beta 1 subunit with the mouse Kv1.1 (mKv1.1) K+ channel in Chinese hamster ovary cells caused an increase in the rate of inactivation of whole-cell current. Current decayed in a bi-exponential fashion with a fast voltage-dependent and a slower voltage-independent component. The inactivating current component accounted for(More)
Using a universal signaling assay employing G-protein chimeras comprising the C-terminal five amino acids of Gi1/2, Gi3, Go, and Gz fused to Gq, the calcium mobilizing G-protein, we explored the role of the C-terminus of Gi family G-proteins as a determinant for 5-HT(1A) receptor functional coupling. Co-expression of the 5-HT(1A) receptor with each of the(More)
The complexity of the 5-hydroxytryptamine (5-HT) (serotonin) receptor family has been increased by the findings that isoforms or splice variants exist for subtypes such as the 5-HT2B, 5-HT2C, 5-HT4 and 5-HT7 subtypes. Further molecular biological studies in our laboratory have demonstrated that a splice variant of the 5-HT6 receptor exists in the human(More)
Hyperpolarization-activated cation nonselective (HCN) channels represent an interesting group of targets for drug development. In this study, the authors report the development of a novel membrane potential-sensitive dye (MPSD) assay for HCN channel modulators that has been miniaturized into 384-well fluorescent imaging plate reader (FLIPR) high-throughput(More)
We present evidence that the 5-hydroxytryptamine(1A) (5-HT(1A)) receptor antagonist, N-{2-[4-(2-methoxyphenyl)-1-piperazinyl]-ethyl}-N-(2-pyridinyl)cyclohexanecarboxamide (WAY-100635), can induce receptor internalization in a human (h)5-HT(1A) receptor Chinese hamster ovary (CHO-K1) cell system. Exposure of h5-HT(1A) CHO cells to WAY-100635 decreased the(More)