Stanley N. Mason

Learn More
We tested the hypothesis that targeted transgenic overexpression of human extracellular superoxide dismutase (EC-SOD) would preserve alveolar development in hyperoxia-exposed newborn mice. We exposed newborn transgenic and wild-type mice to 95% oxygen (O2) or air x 7 days and measured bronchoalveolar lavage cell counts, and lung homogenate EC-SOD, oxidized(More)
Hyperoxia may contribute to lung disease in newborns through effects on alveolar neutrophils which predominate in respiratory distress syndrome and other acute lung injuries. Neutrophil chemokines such as interleukin-8 (IL-8) regulate chemoattraction, and are elevated in tracheal aspirates of newborns who develop bronchopulmonary dysplasia (BPD). Blockade(More)
Neutrophil influx in lung injury is controlled in part by chemokines acting through the receptor, CXCR2. To avoid adverse effects of steroids typically used to modify inflammation, we evaluated the effects of competitive blockade of CXCR2 in rats on neutrophil function in vitro and on neutrophil influx in vivo in hyperoxia-induced newborn lung injury, a(More)
BACKGROUND Low socioeconomic status is consistently associated with reduced physical and mental health, but the mechanisms remain unclear. Increased levels of urban air pollutants interacting with parental stress have been proposed to explain health disparities in respiratory disease, but the impact of such interactions on mental health is unknown. (More)
RATIONALE Inhaled nitric oxide (NO) has been used to prevent bronchopulmonary dysplasia, but with variable results. Ethyl nitrite (ENO) forms S-nitrosothiols more readily than does NO, and resists higher-order nitrogen oxide formation. Because S-nitrosylation is a key pathway mediating many NO biological effects, treatment with inhaled ENO may better(More)
BACKGROUND We previously showed that intra-amniotic lipopolysaccharide (LPS) amplifies alveolar hypoplasia induced by postnatal hyperoxia. We determined whether the priming effect of intra-amniotic LPS amplifies hyperoxia-induced airway hyperreactivity (AHR). METHODS LPS or normal saline was injected into the amniotic cavities of pregnant rats at the 20th(More)
Hyperoxia disrupts postnatal lung development in part through inducing inflammation. To determine the contribution of leukocyte-derived reactive oxygen species, we exposed newborn wild-type and NADPH oxidase p47(phox) subunit null (p47(phox-/-)) mice to air or acute hyperoxia (95% O(2)) for up to 11 days. Hyperoxia-induced pulmonary neutrophil influx was(More)
  • 1