Stanley L. Hazen

Learn More
Metabolomics studies hold promise for the discovery of pathways linked to disease processes. Cardiovascular disease (CVD) represents the leading cause of death and morbidity worldwide. Here we used a metabolomics approach to generate unbiased small-molecule metabolic profiles in plasma that predict risk for CVD. Three metabolites of the dietary lipid(More)
We performed a meta-analysis of 14 genome-wide association studies of coronary artery disease (CAD) comprising 22,233 individuals with CAD (cases) and 64,762 controls of European descent followed by genotyping of top association signals in 56,682 additional individuals. This analysis identified 13 loci newly associated with CAD at P < 5 × 10⁻⁸ and confirmed(More)
BACKGROUND Recent studies in animals have shown a mechanistic link between intestinal microbial metabolism of the choline moiety in dietary phosphatidylcholine (lecithin) and coronary artery disease through the production of a proatherosclerotic metabolite, trimethylamine-N-oxide (TMAO). We investigated the relationship among intestinal microbiota-dependent(More)
Coronary artery disease (CAD) is the commonest cause of death. Here, we report an association analysis in 63,746 CAD cases and 130,681 controls identifying 15 loci reaching genome-wide significance, taking the number of susceptibility loci for CAD to 46, and a further 104 independent variants (r(2) < 0.2) strongly associated with CAD at a 5% false discovery(More)
CONTEXT Paraoxonase 1 (PON1) is reported to have antioxidant and cardioprotective properties. The relationship between PON1 genotypes and functional activity with systemic measures of oxidative stress and cardiovascular disease (CVD) risk in humans has not been systematically investigated. OBJECTIVE To investigate the relationship of genetic and(More)
Atrial fibrillation (AF) is the most common sustained arrhythmia. Previous studies have identified several genetic loci associated with typical AF. We sought to identify common genetic variants underlying lone AF. This condition affects a subset of individuals without overt heart disease and with an increased heritability of AF. We report a meta-analysis of(More)
In recent studies we demonstrated that systemic levels of protein-bound nitrotyrosine (NO(2)Tyr) and myeloperoxidase (MPO), a protein that catalyzes generation of nitrating oxidants, serve as independent predictors of atherosclerotic risk, burden, and incident cardiac events. We now show both that apolipoprotein A-I (apoA-I), the primary protein constituent(More)
CONTEXT Sickle cell disease is characterized by a state of nitric oxide resistance and limited bioavailability of l-arginine, the substrate for nitric oxide synthesis. We hypothesized that increased arginase activity and dysregulated arginine metabolism contribute to endothelial dysfunction, pulmonary hypertension, and patient outcomes. OBJECTIVE To(More)
Atherosclerosis is a chronic inflammatory process where oxidative damage within the artery wall is implicated in the pathogenesis of the disease. Mononuclear phagocytes, an inflammatory cell capable of generating a variety of oxidizing species, are early components of arterial lesions. Their normal functions include host defense and surveillance through(More)
The majority of phospholipase A2 activity in myocardium is calcium-independent and selective for hydrolysis of plasmalogen substrate (Wolf, R. A., and Gross, R. W. (1985) J. Biol. Chem. 260, 7295-7303; Hazen, S. L., Stuppy, R. J., and Gross, R. W. (1990) J. Biol. Chem. 265, 10622-10630). Accordingly, identification of an inhibitor which selectively targets(More)