Learn More
The DNA methyltransferase of bacteriophage T4 (T4 Dam MTase) recognizes the palindromic sequence GATC, and catalyzes transfer of the methyl group from S:-adenosyl-L-methionine (AdoMet) to the N(6)-position of adenine [generating N(6)-methyladenine and S:-adenosyl-L-homocysteine (AdoHcy)]. Pre-steady state kinetic analysis revealed that the methylation rate(More)
The genomic DNAs of the eukaryotic Chlorella-like green alga, strain NC64A, and eleven of its viruses all contain significant levels of 5-methyldeoxycytidine. In addition, the host DNA as well as six of the viral DNAs also contain N6-methyldeoxyadenosine. At least some of the methylated bases in the host reside in different base sequences than the(More)
We examined the DNA of Saccharomyces cerevisiae by both HpaII-MspI restriction enzyme digestion and high-performance liquid chromatography analysis for the possible presence of 5-methylcytosine. Both of these methods failed to detect cytosine methylation within this yeast DNA; i.e., there is less than 1 5-methylcytosine per 3,100 to 6,000 cytosine residues.
A nomenclature is described for restriction endonucleases, DNA methyltransferases, homing endonucleases and related genes and gene products. It provides explicit categories for the many different Type II enzymes now identified and provides a system for naming the putative genes found by sequence analysis of microbial genomes.
The bacteriophage T4 dam gene, encoding the Dam DNA [N6-adenine]methyltransferase (MTase), has been subcloned into the plasmid expression vector, pJW2. In this construct, designated pINT4dam, transcription is from the regulatable phage lambda pR and pL promoters, arranged in tandem. A two-step purification scheme using DEAE-cellulose and phosphocellulose(More)
The DNA-[N6-adenine] methyltransferase of T4 phage (T4 Dam MTase) catalyzes methyl group transfer from S-adenosyl-L-methionine (AdoMet) to the N6-position of adenine in the palindromic sequence, GATC. We have investigated the effect of eliminating different structural components of the recognition site on the ability of a substrate to be bound and(More)
We have analyzed the nature/content of methylated bases in the nuclear DNA of three unicellular eucaryotes. The pattern of methylation was different for each of the three organisms studied: Saccharomyces cerevisiae contained only 5-methylcytosine; Tetrahymena pyriformis contained only N6-methyladenine; and Chlamydomonas reinhardi contained both modified(More)
DNA methylation in lower eukaryotes, in contrast to vertebrates, can involve modification of adenine to N6-methyladenine (m6A). While DNA-[cytosine] methylation in higher eukaryotes has been implicated in many important cellular processes, the function(s) of DNA-[adenine] methylation in lower eukaryotes remains unknown. I have chosen to study the ciliate(More)
DNA isolated from macronuclei of the ciliate, Tetrahymena pyriformis, has been found to contain [(6)N]methyl adenine (MeAde); this represents the first clear demonstration of significant amounts of MeAde in the DNA of a eucaryote. The amounts of macronuclear MeAde differed slightly between different strains of Tetrahymena, with approximately 0.65-0.80% of(More)
The fluorescence of 2-aminopurine ((2)A)-substituted duplexes (contained in the GATC target site) was investigated by titration with T4 Dam DNA-(N6-adenine)-methyltransferase. With an unmethylated target ((2)A/A duplex) or its methylated derivative ((2)A/(m)A duplex), T4 Dam produced up to a 50-fold increase in fluorescence, consistent with (2)A being(More)