Stanislava V. Avrova

Learn More
Fluorescence polarization measurements were used to study changes in the orientation and order of different sites on actin monomers within muscle thin filaments during weak or strong binding states with myosin subfragment-1. Ghost muscle fibers were supplemented with actin monomers specifically labeled with different fluorescent probes at Cys-10, Gln-41,(More)
The effect of twitchin, a thick filament protein of molluscan muscles, on the actin-myosin interaction at several mimicked sequential steps of the ATPase cycle was investigated using the polarized fluorescence of 1.5-IAEDANS bound to myosin heads, FITC-phalloidin attached to actin and acrylodan bound to twitchin in the glycerol-skinned skeletal muscle(More)
The molecular mechanisms by which troponin (TN)-tropomyosin (TM) regulates the myosin ATPase cycle were investigated using fluorescent probes specifically bound to Cys36 of TM, Cys707 of myosin subfragment-1, and Cys374 of actin incorporated into ghost muscle fibers. Intermediate states of actomyosin were simulated by using nucleotides and non-hydrolysable(More)
Dilated cardiomyopathy (DCM), characterized by cardiac dilatation and contractile dysfunction, is a major cause of heart failure. DCM can result from mutations in the gene encoding cardiac α-tropomyosin (TM). In order to understand how the dilated cardiomyopathy-causing Glu40Lys mutation in TM affects actomyosin interactions, thin filaments have been(More)
Molluscan catch muscles can maintain tension with low or even no energy utilization, and therefore, they represent ideal models for studying energy-saving holding states. For many decades it was assumed that catch is due to a simple slowing of the force-generating myosin head cross-bridge cycles. However, recently evidences increased suggesting that catch(More)
Smooth muscle thin filaments have been reconstituted in muscle ghost fibers by incorporation of smooth muscle actin, tropomyosin and caldesmon. For the first time, rotation of subdomain-1 and changes of its mobility in IAEDANS-labeled actin during the ATP hydrolysis cycle simulated using nucleotides and non-hydrolysable ATP analogs have been demonstrated(More)
In order to understand how the Glu54Lys mutation of alpha-tropomyosin affects actomyosin interactions, we labeled SH1 helix of myosin subfragment-1 (S1) and the actin subdomain-1 with fluorescent probes. These proteins were incorporated into ghost muscle fibers and their conformational states were monitored during the ATPase cycle by measuring polarized(More)
Caldesmon is a component of the thin filaments of smooth muscles where it is believed to play an essential role in regulating the thin filaments' interaction with myosin and hence contractility. We studied the effects of caldesmon and two recombinant fragments CaDH1 (residues 506-793) and CaDH2 (residues 683-767) on the structure of actin-tropomyosin by(More)
Calponin, an actin/calmodulin-binding protein present in smooth muscle thin filaments, modulates the actin-myosin interaction and actomyosin ATPase activity of smooth muscle myosin II. Binding of myosin heads to actin under conditions that produce weak or strong binding induces conformational changes in actin. Polarized fluorimetric measurements of(More)
Effect of calponin and 38 kD actin-binding proteolytic fragment of caldesmon on actin structure alterations, initiated by decoration of thin filaments by N-ethylmaleimide-modified skeletal myosin subfragment-1 (NEM-S1) and by phosphorylated smooth heavy meromyosin (pHMM), has been studied by polarized fluorimetry. F-actin of myosin-free ghost fiber was(More)