Stanislav Y. Shvartsman

Learn More
Physicochemical models of signaling pathways are characterized by high levels of structural and parametric uncertainty, reflecting both incomplete knowledge about signal transduction and the intrinsic variability of cellular processes. As a result, these models try to predict the dynamics of systems with tens or even hundreds of free parameters. At this(More)
The dorsoventral (DV) patterning of the Drosophila embryo depends on the nuclear localization gradient of Dorsal (Dl), a protein related to the mammalian NF-kappaB transcription factors. Current understanding of how the Dl gradient works has been derived from studies of its transcriptional interpretation, but the gradient itself has not been quantified. In(More)
Patterning of the terminal regions of the Drosophila embryo relies on the gradient of phosphorylated ERK/MAPK (dpERK), which is controlled by the localized activation of the Torso receptor tyrosine kinase [1-4]. This model is supported by a large amount of data, but the gradient itself has never been quantified. We present the first measurements of the(More)
Computational models have rarely been used as tools by biologists but, when models provide experimentally testable predictions, they can be extremely useful. The epidermal growth factor receptor (EGFR) is probably the best-understood receptor system, and computational models have played a significant part in its elucidation. For many years, models have been(More)
Autocrine signaling through the Epidermal Growth Factor Receptor (EGFR) operates at various stages of development across species. A recent hypothesis suggested that a distributed network of EGFR autocrine loops was capable of spatially modulating a simple single-peaked input into a more complex two-peaked signaling pattern, specifying the formation of a(More)
During Drosophila oogenesis, patterning activities of the EGFR and Dpp pathways specify several subpopulations of the follicle cells that give rise to dorsal eggshell structures. The roof of dorsal eggshell appendages is formed by the follicle cells that express Broad (Br), a zinc-finger transcription factor regulated by both pathways. EGFR induces Br in(More)
The Bicoid gradient in the Drosophila embryo provided the first example of a morphogen gradient studied at the molecular level. The exponential shape of the Bicoid gradient had always been interpreted within the framework of the localized production, diffusion, and degradation model. We propose an alternative mechanism, which assumes no Bicoid degradation.(More)
A model of autocrine signaling in cultures of suspended cells is developed on the basis of the effective medium approximation. The fraction of autocrine ligands, the mean and distribution of distances traveled by paracrine ligands before binding, as well as the mean and distribution of the ligand lifetime are derived. Interferon signaling by dendritic(More)
We describe a mechanism for context-dependent cell signaling mediated by autocrine loops with positive feedback. We demonstrate that the composition of the extracellular medium can critically influence the intracellular signaling dynamics induced by extracellular stimuli. Specifically, in the epidermal growth factor receptor (EGFR) system, amplitude and(More)
Two-dimensional patterning of the follicular epithelium in Drosophila oogenesis is required for the formation of three-dimensional eggshell structures. Our analysis of a large number of published gene expression patterns in the follicle cells suggests that they follow a simple combinatorial code based on six spatial building blocks and the operations of(More)