Stanislav Y. Emelianov

Learn More
Shear wave elasticity imaging (SWEI) is a new approach to imaging and characterizing tissue structures based on the use of shear acoustic waves remotely induced by the radiation force of a focused ultrasonic beam. SWEI provides the physician with a virtual "finger" to probe the elasticity of the internal regions of the body. In SWEI, compared to other(More)
In ultrasound elasticity imaging, strain decorrelation is a major source of error in displacements estimated using correlation techniques. This error can be significantly decreased by reducing the correlation kernel. Additional gains in signal-to-noise ratio (SNR) are possible by filtering the correlation functions prior to displacement estimation.(More)
In traditional speckle tracking, lateral displacement (perpendicular to the beam direction) estimates are much less accurate than axial ones (along the beam direction). The accuracy of lateral tracking is very important whenever spatial derivatives of both axial and lateral displacements are required to give a full description of a two-dimensional (2-D)(More)
Longitudinal monitoring of cells is required in order to understand the role of delivered stem cells in therapeutic neovascularization. However, there is not an imaging technique that is capable of quantitative, longitudinal assessment of stem cell behaviors with high spatial resolution and sufficient penetration depth. In this study, in vivo and in vitro(More)
A method is introduced to measure internal mechanical displacement and strain by means of MRI. Such measurements are needed to reconstruct an image of the elastic Young's modulus. A stimulated echo acquisition sequence with additional gradient pulses encodes internal displacements in response to an externally applied differential deformation. The sequence(More)
Since being discovered by Alexander Bell, photoacoustics may again be seeing major resurgence in biomedical imaging. Photoacoustics is a non-ionizing, functional imaging modality capable of high contrast images of optical absorption at depths significantly greater than traditional optical imaging techniques. Optical contrast agents have been used to extend(More)
To detect macrophages in atherosclerotic plaques, plasmonic gold nanoparticles are introduced as a contrast agent for intravascular photoacoustic imaging. The phantom and ex vivo tissue studies show that the individual spherical nanoparticles, resonant at 530 nm wavelength, produce a weak photoacoustic signal at 680 nm wavelength while photoacoustic signal(More)
Intravascular photoacoustic (IVPA) imaging is a catheter-based, minimally invasive, imaging modality capable of providing high-resolution optical absorption map of the arterial wall. Integrated with intravascular ultrasound (IVUS) imaging, combined IVPA and IVUS imaging can be used to detect and characterize atherosclerotic plaques building up in the inner(More)
Independent measurements of the elastic modulus (Young's modulus) of tissue are necessary step in turning elasticity imaging into a clinical tool. A system capable of measuring the elastic modulus of small tissue samples was developed. The system tolerates the constraints of biological tissue, such as limited sample size (< or = 1.5 cm3) and imperfections(More)
The relative success of manual palpation in the detection of breast cancer would suggest that a method for remote palpation resulting in a measurement of tissue elasticity could provide a diagnostic tool for detecting cancerous lesions deeper within the breast. This presumption is based in part on the excellent contrast between neoplastic and normal tissue(More)