Learn More
Ion channelopathies are inherited diseases in which alterations in control of ion conductance through the central pore of ion channels impair cell function, leading to periodic paralysis, cardiac arrhythmia, renal failure, epilepsy, migraine and ataxia. Here we show that, in contrast with this well-established paradigm, three mutations in(More)
Some inherited periodic paralyses are caused by mutations in skeletal muscle Na(V)1.4 sodium channels that alter channel gating and impair action potential generation. In the case of hypokalemic periodic paralysis, mutations of one of the outermost two gating charges in the S4 voltage sensor in domain II of the Na(V)1.4 alpha subunit induce gating pore(More)
Voltage-gated sodium channels activate in response to depolarization, but it is unknown whether the voltage-sensing arginines in their S4 segments pivot across the lipid bilayer as voltage sensor paddles or move through the protein in a gating pore. Here we report that mutation of pairs of arginine gating charges to glutamine induces cation permeation(More)
Hypokalemic periodic paralysis and normokalemic periodic paralysis are caused by mutations of the gating charge-carrying arginine residues in skeletal muscle Na(V)1.4 channels, which induce gating pore current through the mutant voltage sensor domains. Inward sodium currents through the gating pore of mutant R666G are only approximately 1% of central pore(More)
ProTx-II, an inhibitory cysteine knot toxin from the tarantula Thrixopelma pruriens, inhibits voltage-gated sodium channels. Using the cut-open oocyte preparation for electrophysiological recording, we show here that ProTx-II impedes movement of the gating charges of the sodium channel voltage sensors and reduces maximum activation of sodium conductance. At(More)
beta-subunit modulation of slow inactivation of class A calcium (Ca2+) channels was studied with two-microlectrode voltage clamp after expression of the alpha1A- (BI-2) together with beta1a-, beta2a-, beta3- or beta4-subunits in Xenopus oocytes. On- and off-rates of slow inactivation were estimated from the kinetics of recovery from slow inactivation. Ca2+(More)
Evolution has created a large family of different classes of voltage-gated Ca2+ channels and a variety of additional splice variants with different inactivation properties. Inactivation controls the amount of Ca2+ entry during an action potential and is, therefore, believed to play an important role in tissue-specific Ca2+ signalling. Furthermore, mutations(More)
The scorpion alpha-toxin Lqh2 (from Leiurus quinquestriatus hebraeus) is active at various mammalian voltage-gated sodium channels (Na(v)s) and is inactive at insect Na(v)s. To resolve the molecular basis of this preference we used the following strategy: 1) Lqh2 was expressed in recombinant form and key residues important for activity at the rat brain(More)
hERG K+ channel function is vital for normal cardiac rhythm, yet the mechanisms underlying the unique biophysical characteristics of the channel, such as slow activation and deactivation gating, are incompletely understood. The S4–S5 linker is thought to transduce voltage sensor movement to opening of the pore gate, but may also integrate signals from(More)
1. The role of calcium (Ca2+) channel inactivation in the molecular mechanism of channel block by phenylalkylamines (PAAs) was analysed in a PAA-sensitive rabbit brain class A Ca2+ channel mutant (alpha1A-PAA). Use-dependent barium current (IBa) inhibition of alpha1A-PAA by (-)gallopamil and Ca2+ channel recovery from inactivation and block were studied(More)