Stanislav I. Alekseev

Oleg V Gordiienko1
Alexander A Radzievsky1
1Oleg V Gordiienko
1Alexander A Radzievsky
Learn More
Millimeter wave (MMW, 42.25 GHz)-induced changes in electrical activity of the murine sural nerve were studied in vivo using external electrode recordings. MMW were applied to the receptive field of the sural nerve in the hind paw. We found two types of responses of the sural nerve to MMW exposure. First, MMW exposure at the incident power density >/=45(More)
Earlier publications demonstrated that 0.9 GHz microwave exposure induced notable changes of the conductivity of modified bilayer lipid membranes (BLM) formed in holes in thin Teflon film (TF). The aims of this study were: 1) to perform detailed calculations of the microwave field distributions in holes formed in TF, using the finite-difference time-domain(More)
The aims of the present study were to calculate the specific absorption rate (SAR) and E-field distributions inside cutaneous blood vessels and in surrounding tissues (dermis and fat) depending on the frequency of millimeter wave exposure. Most calculations were performed using the finite-difference time-domain (FDTD) technique. A rectangular block of(More)
Specific absorption rate (SAR) distributions in the vicinity of a thermocouple or air bubble in water and in the presence of hair or sweat duct in skin were calculated using analytical and two-dimensional impedance methods. The objects were exposed to uniform 42.25 GHz plane electromagnetic fields. Insertion of a 0.1-mm thermocouple or similarly sized air(More)
  • 1