Stan C. Davis

  • Citations Per Year
Learn More
Whereas considerable interest exists in self-assembly of well-ordered, porous "inverse opal" structures for optical, electronic, and (bio)chemical applications, uncontrolled defect formation has limited the scale-up and practicality of such approaches. Here we demonstrate a new method for assembling highly ordered, crack-free inverse opal films over a(More)
Electrospray mass spectrometry (ES/MS) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI/TOF/MS) were used to provide mass spectra from seven elapid snake venoms. Spectral interpretation was much simpler for MALDI/TOF/MS. ES/MS proved more useful for the provision of molecular weight data for very closely related(More)
optical switches, [ 3 ] lithium ion batteries, [ 4 ] and label-free optical detection of numerous analytes (bacteria, enzymes, viruses, DNA, gases). [ 5–18 ] Conventionally, pSi fi lms are fabricated by anodization of single crystal silicon wafers, leading to fi lms possessing two-dimensional, cylindrical mesopores with thicknesses controlled by the(More)
Colloidal self-assembly holds promise for photonic applications as a solution-based, low-cost alternative to top-down photolithography, if significant control of uniformity and defects can be achieved. Herein we demonstrate a new evaporative co-assembly method for highly-uniform inverse opal thin films that involves the self-assembly of polymer colloids in(More)
Whereas considerable interest exists in self-assembly of well-ordered, porous "inverse opal" structures for optical, electronic, and (bio)chemical applications, uncontrolled defect formation has limited the scale-up and practicality of such approaches. Here we demonstrate a new method for assembling highly ordered, crack-free inverse opal films over a(More)
The conceptual development and piloting of an innovative water treatment system for process water produced by a uranium mine mill is described. The process incorporates lime/CO2 softening (Stage 1), reverse osmosis (Stage 2) and biopolishing (Stage 3) to produce water of quality suitable for release to the receiving environment. Comprehensive performance(More)
We develop a model for silicon-on-insulator microresonators with magnesiothermically-formed porous silicon cladding possessing three-dimensional interconnected pores. Investigation of waveguide design and geometrical parameters indicates an optimized areal mass sensitivity of ~ 0.2 pm/(pg/mm<sup>2</sup>).
  • 1