Learn More
The susceptibility of the developing nervous system to damage following exposure to environmental contaminants has been well recognized. More recently, from a regulatory perspective, an increased emphasis has been placed on the vulnerability of the developing nervous system to damage following pesticide exposure. The publication of the National Academy of(More)
Developmental expression of AChE has been associated with neuronal differentiation (P. G. Layer and E. Willbold, Prog. Histochem. Cytochem. 29, 1-94, 1995). In this study we used pheochromocytoma (PC12) cells, a noncholinergic cell line, rich in acetylcholinesterase (AChE) activity, to examine the effects of cholinesterase-inhibiting pesticides on neural(More)
The present studies were undertaken to characterize the regional and temporal patterns of neurotrophin messenger RNA and protein levels for beta-nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3 in the developing CNS. We have examined the levels of these neurotrophin messenger RNAs with ribonuclease protection assays and(More)
Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants, some of which may be neurotoxic. In vitro studies from this laboratory indicated that noncoplanar PCBs perturbed intracellular signal transduction mechanisms including Ca2+ homeostasis, receptor-mediated inositol phosphate production, and translocation of protein kinase C (PKC). In(More)
The disposition and toxicity of inhaled elemental mercury (Hg0) vapor for pregnant Long-Evans rats, and potential adverse effects on reproductive outcome were investigated. Rats were exposed to 0, 1, 2, 4, or 8 mg Hg0/m(3) for 2 h/day from gestation day (GD) 6 through GD 15. Maternal toxicity occurred primarily in rats exposed to 4 and 8 mg/m(3) and was(More)
Previous studies have shown that, in general, young, postnatal animals are more sensitive than adults to the toxic effects of anticholinesterase (antiChE) pesticides. Paradoxically, often fetal brain cholinesterase (ChE) is less inhibited than maternal brain after gestational exposure to an antiChE, presumably due to placental and fetal detoxification of(More)
Previous studies have revealed that lead modulates the DNA-binding profile of the transcription factor Sp1 both in vivo and in vitro (Dev Brain Res 1998;107:291). Sp1 is a zinc finger protein, that is selectively up-regulated in certain developing cell types and plays a regulatory role during development and differentiation (Mol Cell Biol 1991;11:2189). In(More)
Previous reports have suggested that IDPN may be ototoxic (Wolff et al., 1977; Crofton and Knight, 1991). The purpose of this research was to investigate the ototoxicity of IDPN using behavioral, physiological and morphological approaches. Three groups of adult rats were exposed to IDPN (0-400 mg/kg/day) for three consecutive days. In the first group, at(More)
The effects of methylmercury (CH3Hg) or mercuric chloride (HgCl(2)) on neurite outgrowth and cell viability were quantified using undifferentiated (unprimed) and differentiated (primed) pheochromocytoma (PC12) cells. In unprimed cells, following 24-h exposure, CH3Hg significantly decreased NGF-stimulated neurite outgrowth at concentrations of 0.3-3 microM.(More)
3,3'-Iminodipropionitrile (IDPN) is a neurotoxicant that produces changes in flash evoked potentials (FEPs) 18 weeks after treatment. We examined dose- and time-related effects of IDPN on FEPs at earlier time points than previously studied (52). Adult male Long-Evans rats were given IDPN (0, 100, 200, 400 mg/kg/day x 3 days, i.p.) and FEPs were recorded 14(More)