Stacey N. Barnaby

  • Citations Per Year
Learn More
s of Papers, 245th National Meeting of the American Chemical<lb>Society, New Orleans, LA, April 7−11, 2013; American Chemical Society: Washington, DC, 2013.<lb>(476) DeAngelis, P. L. Heparosan Polysaccharide for Drug Delivery; a Biosuperior Alternative to Pegylation. Glycobiology 2013, 23, 1347.<lb>(477) Schlapschy, M.; Binder, U.; Borger, C.; Theobald, I.;(More)
Small interfering RNA (siRNA) is a powerful and highly effective method to regulate gene expression in vitro and in vivo. However, the susceptibility to serum nuclease-catalyzed degradation is a major challenge and it remains unclear whether the strategies developed to improve the stability of siRNA free in serum solution are ideal for siRNA conjugated to(More)
Learning how to assemble inorganic nanoparticles into ordered lattices may prove to be important for applications, such as, electronics, photonics, and catalysis. Indeed, theoretical studies have shown that certain types of crystalline arrays of nanoparticles could potentially be used to generate photonic band-gap materials, negative index materials, and(More)
Spherical nucleic acids (SNAs) represent an emerging class of nanoparticle-based therapeutics. SNAs consist of densely functionalized and highly oriented oligonucleotides on the surface of a nanoparticle which can either be inorganic (such as gold or platinum) or hollow (such as liposomal or silica-based). The spherical architecture of the oligonucleotide(More)
Ellagic acid (EA), a plant polyphenol known for its wide-range of health benefits was encapsulated within self-assembled threonine based peptide microtubes. The microtubes were assembled using the synthesized precursor bolaamphiphile bis(N-α-amido threonine)-1,5-pentane dicarboxylate. The self-assembly of the microstructures was probed at varying pH. In(More)
Chemical bonds are a key determinant of the structure and properties of a material. Thus, rationally designing arbitrary materials requires complete control over the bond. While atomic bonding is dictated by the identity of the atoms, nanoparticle superlattice engineering, where nanoparticle "atoms" are held together by DNA "bonds", offers a route to design(More)
Self-assembling peptide sequences (both synthetic and natural) have emerged as a new group of building blocks for diverse applications. In this work we investigated the formation of assemblies of three diverse peptide sequences derived from the crustacean cardioactive peptide CCAP (1-9), a cardioaccelerator and neuropeptide transmitter in crustaceans,(More)
In this work, ellagic acid (EA), a naturally occurring plant polyphenol, was utilized for the biomimetic synthesis of silver (Ag) nanoparticles, which over a period of time formed extended branched nanochains of hexagonal-shaped silver nanoparticles. It was found that EA not only has the capability of reducing silver ions, resulting in the formation of Ag(More)
In this work we have designed self-assembled peptide-based microconstructs and examined their interactions with elastin and collagen for potential application as scaffolds for chondrocyte cell attachment. Being biological in nature, peptide-based nano- and microstructures have intrinsic molecular recognition properties which allow extensive chemical,(More)
Herein, we have studied the self-assembly and the spontaneous growth of microassemblies of the plant polyphenol ellagic acid for HeLa cancer cell imaging and therapy. The growth of the assemblies was studied at varying pH over time. It was found that initially microspheres were formed which gradually transformed into microfibers via nucleation and(More)