Learn More
Privacy concerns are among the major barriers to efficient secondary use of information and data on humans. Differential privacy is a relatively recent measure that has received much attention in machine learning as it quantifies individual risk using a strong cryptographically motivated notion of privacy. At the core of differential privacy lies the(More)
MOTIVATION Interpretation of classification models derived from gene-expression data is usually not simple, yet it is an important aspect in the analytical process. We investigate the performance of small rule-based classifiers based on fuzzy logic in five datasets that are different in size, laboratory origin and biomedical domain. RESULTS The(More)
Data originating from biomedical experiments has provided machine learning researchers with an important source of motivation for developing and evaluating new algorithms. A new wave of algorithmic development has been initiated with the publication of gene expression data derived from microarrays. Microarray data analysis is particularly challenging given(More)
We investigate the use of perceptrons for classification of microarray data where we use two datasets that were published in [Nat. Med. 7 (6) (2001) 673] and [Science 286 (1999) 531]. The classification problem studied by Khan et al. is related to the diagnosis of small round blue cell tumours (SRBCT) of childhood which are difficult to classify both(More)
This paper evaluates the variable selection performed by several machine-learning techniques on a myocardial infarction data set. The focus of this work is to determine which of 43 input variables are considered relevant for prediction of myocardial infarction. The algorithms investigated were logistic regression (with stepwise, forward, and backward(More)
Differential privacy is a cryptographically motivated definition of privacy which has gained considerable attention in the algorithms, machine-learning and data-mining communities. While there has been an explosion of work on differentially private machine learning algorithms, a major barrier to achieving end-to-end differential privacy in practical machine(More)
We analyze the discriminatory power of k-nearest neighbors, logistic regression, artificial neural networks (ANNs), decision tress, and support vector machines (SVMs) on the task of classifying pigmented skin lesions as common nevi, dysplastic nevi, or melanoma. Three different classification tasks were used as benchmarks: the dichotomous problem of(More)
iDASH (integrating data for analysis, anonymization, and sharing) is the newest National Center for Biomedical Computing funded by the NIH. It focuses on algorithms and tools for sharing data in a privacy-preserving manner. Foundational privacy technology research performed within iDASH is coupled with innovative engineering for collaborative tool(More)